Crowdsourcing the phase problem

Jun 17, 2014 by Jonathan Agbenyega
This is an overlay of electron-density maps calculated from the final crowdsourced phase solutions and the true phases for the two test cases. Credit: Jorda et al./International Union of Crystallography

Compared with humans, computers have the capacity to solve problems at much greater speed. There are many problems, however, where computational speed alone is insufficient to find a correct or optimal solution, for example because the parameter "space" cannot be fully searched in a practical time. In contrast, the human mind can formulate expert knowledge specific for particular problems, providing a capacity to guide more efficient searches, although with more limited processing speed.

The power of the human contribution can be multiplied through the efforts of a greater number of individuals. The term `', which combines the two domains of human and electronic computing, was coined in 2006 and since then has seen its definition broadened to a wide range of activities involving a network of people.

A challenging problem that might benefit from crowdsourcing is the phase problem in X-ray crystallography. Retrieving the phase information has plagued many scientists for decades when trying to determine the crystal structure of a sample.

In a diffraction experiment, the observed diffraction pattern allows measurement of the amplitudes of the reflection structure factors (as the square root of the intensities) but not their phases. The amplitudes and phases are both needed to reconstruct an electron-density map (by Fourier synthesis) so that a model of the crystallized molecule can be obtained.

There are a number of ways currently scientists try to solve the phase problem, all with varying degrees of success.

Regardless of the particular approach, most attacks on the phase problem can be viewed as having two sub-problems. One concerns how a high-dimensional space (i.e. of phases) can be efficiently searched, while the other concerns how a good solution can be recognized.

Crowdsourcing may be a route to solving these sub-problems [Jorda et al. (2014), Acta Cryst. D70, 1538-1548; doi:10.1107/S1399004714006427 ], here scientists have developed a game based on a genetic algorithm (a powerful search-optimization technique), where players control the selection mechanism during the evolutionary process (by recognising the good solutions). The algorithm starts from a population of "individuals", in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals.

The game called CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30 degree phase error range and corresponding molecular envelopes showing agreement with the low-resolution models.

Successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.

Explore further: Faster computation of electromagnetic interference on an electronic circuit board

Provided by International Union of Crystallography

3 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

A new approach for solving protein structures

Sep 06, 2012

(Phys.org)—Using synchrotron x-ray beams to solve the molecular structures of proteins and other large biological molecules has yielded many advances in medicine, such as drug therapies for cancer. Improvements ...

Thermotropic phase boundaries in classic ferroelectrics

Feb 04, 2014

(Phys.org) —Novel monoclinic subphases in ferroelectric BaTiO3 were observed by ANL's Center for Nanoscale Materials users from The Pennsylvania State University in collaboration with CNM's X-Ray Microscopy ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.