A counterintuitive phenomenon discovered: The coexistence of superconductivity with dissipation

Jun 29, 2014
Experimental observation of the voltage plateau. Credit: Nature Physics, DOI: 10.1038/nphys3008

For his doctoral dissertation in the Goldman Superconductivity Research Group at the University of Minnesota, Yu Chen, now a postdoctoral researcher at UC Santa Barbara, developed a novel way to fabricate superconducting nanocircuitry. However, the extremely small zinc nanowires he designed did some unexpected—and sort of funky—things.

Chen, along with his thesis adviser, Allen M. Goldman, and theoretical physicist Alex Kamenev, both of the University of Minnesota, spent years seeking an explanation for these extremely puzzling effects. Their findings appear this week in Nature Physics.

"We were determined to figure out how we could reconcile the strange phenomena with the longstanding rules governing superconductivity," said lead author Chen. "The coexistence of superconductivity with dissipation, which we observed, is counterintuitive and bends the rules as we know them."

Typically superconductivity and dissipation are thought to be mutually exclusive because dissipation, a process in thermodynamic systems whereby electric energy is transformed into heat, is a feature of a normal—versus a superconductive—state.

"But we discovered that superconductivity and dissipation can coexist under rather generic conditions in what appears to be a universal manner," Chen said.

After long and careful work, which involved both experimental and theoretical efforts, the researchers found an explanation that fits. Behind all of the observed phenomena is a peculiar nonequilibrium state of quasiparticles—electron-like excitations that formed in the nanowires Chen designed.

The quasiparticles are created by phase slips. In a superconductive state, when supercurrent flows through the nanowire, the quantum mechanical function describing the superconductivity of the wire evolves along the length of the wire as a spiral shaped like a child's Slinky toy. From time to time, one of the revolutions of the spiral contracts and disappears altogether. This event is called a phase slip. This quirk generates quasiparticles, giving rise to a previously undiscovered voltage plateau state where dissipation and coexist.

"The most significant achievement was making the nanowires smaller and cooler than anyone had done previously," Kamenev said. "This allowed the quasiparticles to travel through the wire faster and avoid relaxation. This leads to a peculiar nonthermal state, which combines properties of a superconductor and a normal metal at the same time."

In addition to discovering this unique phenomenon, the team also found another heretofore-unseen property in the voltage plateau. When a magnetic field is turned on in the voltage plateau state, rather than shrinking the superconducting region, which is what would usually occur, the superconducting area expands and is enhanced.

"This is an unexpected property of very small nanowires," said Goldman.

This state appears to be universal for ultra-small superconducting circuitry like Chen's, which features ideal contacts between the nano-elements and the leads. Such nanoscale superconductors may be key components in future superconducting computer systems.

"Our findings demonstrate that superconducting nanocircuits can be used as a simple, but rather generic platform to investigate nonequilibrium quantum phenomena," Chen concluded.

"Now we need to explore the parameters of nanowires that give rise to the effect and those that don't," Goldman said. "We also need to examine the behavior of wires of different lengths and different materials in order to further define the parameters."

Explore further: Superconducting refrigerator cools via tunneling cascade

More information: Dissipative superconducting state of non-equilibrium nanowires, Nature Physics, DOI: 10.1038/nphys3008

add to favorites email to friend print save as pdf

Related Stories

Superconducting refrigerator cools via tunneling cascade

Jun 19, 2014

(Phys.org) —Cooling microscopic objects to temperatures near absolute zero requires unconventional refrigeration technologies. One microscale cooling method is superconducting refrigeration, in which refrigerators ...

Ti-V alloys' superconductivity: Inherent, not accidental

Jun 23, 2014

Physicists from India have shed new light on a long-unanswered question related to superconductivity in so-called transition metal binary alloys. The team revealed that the local magnetic fluctuations, or ...

Superconducting secrets solved after 30 years

Jun 17, 2014

(Phys.org) —A breakthrough has been made in identifying the origin of superconductivity in high-temperature superconductors, which has puzzled researchers for the past three decades.

Progress in the fight against quantum dissipation

Apr 16, 2014

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

Recommended for you

Synchrotron upgrade to make X-rays even brighter

7 minutes ago

(Phys.org) —The X-rays produced by the Cornell High Energy Synchrotron Source (CHESS) are bright, but they will soon be even brighter, thanks to a major upgrade that will make the quality of CHESS' X-rays ...

Cold Atom Laboratory creates atomic dance

15 hours ago

Like dancers in a chorus line, atoms' movements become synchronized when lowered to extremely cold temperatures. To study this bizarre phenomenon, called a Bose-Einstein condensate, researchers need to cool ...

Wild molecular interactions in a new hydrogen mixture

21 hours ago

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Scientists create possible precursor to life

22 hours ago

How did life originate? And can scientists create life? These questions not only occupy the minds of scientists interested in the origin of life, but also researchers working with technology of the future. ...

User comments : 0