Colonial-era dams trigger parallel evolution of Connecticut fish

Jun 10, 2014

Decisions made by Colonial era settlers to dam Connecticut waterways triggered sudden and parallel evolutionary changes in two species of fish competing for food, a new Yale University study shows.

Earlier studies documented the decrease in size and changes in gill structure of members of the alewife cut off from access to the sea in newly dammed lakes. The new study, published online June 11 in the journal Proceedings of the Royal Society B, found similar changes in feeding habits of the bluegill, which also showed greater ability to feed on smaller zooplankton found in landlocked lakes the species shared with the alewife.

"Rapid evolution not only occurs, but runs across the food web in ways we are only now starting to understand," said David Post, professor of ecology and evolutionary biology and senior author the paper.

In its natural state, the small herring-like alewife swarms into Connecticut lakes, devours insects and all large zooplankton growing unmolested for most of the year, and then heads back out to sea, where itself becomes the main course of many of the ocean's fishes. However, the alewife underwent fundamental changes when lakes were dammed in Connecticut 300 years ago. The landlocked alewife became smaller, eliminated all large zooplankton in the lakes, and underwent changes in its gill structure that enabled it to eat the smaller zooplankton that grew there.

Magnus Huss, a postdoctoral fellow in Post's lab, now at the Swedish University of Agricultural Sciences, wanted to see if the strong effects of landlocked alewives on the zooplankton community would lead to similar changes in bluegills. Post, Huss and co-authors found that bluegills in lakes with ocean access did not feed well on small , but bluegills living in lakes isolated from the ocean with the landlocked alewives did just fine on a diet of smaller fare.

Post said these studies show that conservation efforts must take into account the entire food network when dealing with environmental changes such as dam construction or the introduction of new species into environments.

"Any time we have invasive species evolving rapidly, we can expect to see changes in competitors as well," Post said.

Explore further: Phytoplankton and zooplankton biomass will decrease 6 and 11 percent due to climate change

add to favorites email to friend print save as pdf

Related Stories

Wherefore art thou, dear zooplankton?

Jun 06, 2014

On a good day, corals make happy homes for photosynthetic algae. It's a cooperative setup, with the algae turning dissolved carbon dioxide into food for the coral and the coral providing a nice roof for the ...

Great Lakes fish feed on invading shrimp

Nov 22, 2011

Hemimysis anomala, or more commonly the bloody red shrimp after its bright red spots—may become a new food source for fish, allaying concerns about how it will impact native fish populations.

Recommended for you

Contrasting views of kin selection assessed

22 hours ago

In an article to be published in the January issue of BioScience, two philosophers tackle one of the most divisive arguments in modern biology: the value of the theory of "kin selection."

Microbiome may have shaped early human populations

Dec 16, 2014

We humans have an exceptional age structure compared to other animals: Our children remain dependent on their parents for an unusually long period and our elderly live an extremely long time after they have ...

DNA sheds light on why largest lemurs disappeared

Dec 16, 2014

Ancient DNA extracted from the bones and teeth of giant lemurs that lived thousands of years ago in Madagascar may help explain why the giant lemurs went extinct. It also explains what factors make some surviving ...

Stay complex, my friends

Dec 16, 2014

The KISS concept – keep it simple, stupid – may work for many situations. However, when it comes to evolution, complexity appears to be key for prosperity and propagating future generations.

Reshaping the horse through millennia

Dec 15, 2014

Whole genome sequencing of modern and ancient horses unveils the genes that have been selected by humans in the process of domestication through the latest 5.500 years, but also reveals the cost of this domestication. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.