Researchers discover how a cluster of water molecules adapts to the presence of an extra proton

June 6, 2014 by Eric Gershon
Researchers discover where the missing proton goes
Yale scientists tackle "one of the grand challenges of contemporary physical chemistry research" — where the missing proton goes.

(Phys.org) —H2O is the molecule everybody knows, and nobody can live without. But for all its familiarity and import for life, aspects of water's behavior have been hard to pin down, including how it conducts positive charge.

In the current issue of the journal Science, Yale University chemists report tracing how a cluster of water molecules adapts to the presence of an extra proton, the positively charged subatomic particle.

Water constantly encounters stray protons—in biological contexts, as when light impinges on the eye's retina, for example, or in purely chemical contexts, as when water is split by electrolysis, or in technological contexts, as in the operation of fuel cells.

The new research results provide long-sought experimental data that advance understanding of water's ability to conduct charge, and researchers expect the data to help theoretical chemists simulate how positive charge propagates through a more extended three-dimensional water network. This in turn will shed light on the way positive charge moves in biological systems.

"Getting this right is one of the grand challenges of contemporary physical chemistry research, and we believe we've taken a big step," said Yale chemist Mark Johnson, the lead investigator. "We now have a clear picture of how an extra proton effectively 'hides' in a three-dimensional water network, solving a decade-long mystery raised by earlier work that revealed everything except the lair of that critical proton."

Scientists have long known and understood how water conducts negative charge (electrons). But showing how positive charge moves through water has been difficult because water molecules are not spectators in the process, Johnson said, but rather "are in fact intrinsic to the effect."

The researchers used advanced laser spectroscopy and mass spectrometry techniques to identify the presence and movement of a proton in the three-dimensional structure of the H+(H2O)21 cluster, an extremely stable group of first observed by the late Nobel laureate and Yale professor John Fenn.

Slow cooling of the water cluster close to absolute zero was key, allowing the nano-crystals (all of the individual H+(H2O)21 clusters) to freeze into the same shape, removing clutter that obscured previous spectroscopic pictures.

The results showed that the cluster has unique infrared signatures for each type of water molecule in the network, from the ones closest to the proton to the ones farthest away. These signatures were specific enough to provide detailed insight into how the proton affects each molecule, and can be used to test and improve the most advanced theoretical calculations.

"It will be important to follow how these signatures evolve with cluster size and increasing temperature," said lead author Joseph Fournier, a graduate student in Johnson's lab.

The paper, published May 30, is titled "Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster."

Explore further: How to count the messenger out: Mapping the structure of protonated water clusters

More information: "Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster." Joseph A. Fournier, Christopher J. Johnson, Conrad T. Wolke, Gary H. Weddle, Arron B. Wolk, Mark A. Johnson. Science 30 May 2014: Vol. 344 no. 6187 pp. 1009-1012 DOI: 10.1126/science.1253788

Related Stories

Photosynthesis reimagined

March 28, 2014

(Phys.org) —Using water as fuel has been a recurrent theme of science fiction since the days of Jules Verne. A recent discovery, however, may bring it one step closer to science fact by mimicking the very first steps of ...

Satisfying metals' thirst vital for high-capacity batteries

June 2, 2014

(Phys.org) —When a multiply charged aluminum or magnesium cation encounters a single water molecule, the result can be explosive. The metal ion rips an electron from the water molecule, causing a molecular-level explosion, ...

Recommended for you

Chemists solve major piece of cellular mystery

August 27, 2015

Not just anything is allowed to enter the nucleus, the heart of eukaryotic cells where, among other things, genetic information is stored. A double membrane, called the nuclear envelope, serves as a wall, protecting the contents ...

Study reveals how nanochannels select potassium ions

August 25, 2015

(Phys.org)—One of the mysteries in biology is how cells can selectively diffuse potassium across a membrane. Biological systems rely on a delicate balance between these potassium and sodium ion concentrations in the surrounding ...

Unusual use of blue pigment found in ancient mummy portraits

August 26, 2015

Mostly untouched for 100 years, 15 Roman-era Egyptian mummy portraits and panel paintings were literally dusted off by scientists and art conservators from Northwestern University and the Phoebe A. Hearst Museum of Anthropology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.