Researchers discover how a cluster of water molecules adapts to the presence of an extra proton

June 6, 2014 by Eric Gershon
Researchers discover where the missing proton goes
Yale scientists tackle "one of the grand challenges of contemporary physical chemistry research" — where the missing proton goes.

( —H2O is the molecule everybody knows, and nobody can live without. But for all its familiarity and import for life, aspects of water's behavior have been hard to pin down, including how it conducts positive charge.

In the current issue of the journal Science, Yale University chemists report tracing how a cluster of water molecules adapts to the presence of an extra proton, the positively charged subatomic particle.

Water constantly encounters stray protons—in biological contexts, as when light impinges on the eye's retina, for example, or in purely chemical contexts, as when water is split by electrolysis, or in technological contexts, as in the operation of fuel cells.

The new research results provide long-sought experimental data that advance understanding of water's ability to conduct charge, and researchers expect the data to help theoretical chemists simulate how positive charge propagates through a more extended three-dimensional water network. This in turn will shed light on the way positive charge moves in biological systems.

"Getting this right is one of the grand challenges of contemporary physical chemistry research, and we believe we've taken a big step," said Yale chemist Mark Johnson, the lead investigator. "We now have a clear picture of how an extra proton effectively 'hides' in a three-dimensional water network, solving a decade-long mystery raised by earlier work that revealed everything except the lair of that critical proton."

Scientists have long known and understood how water conducts negative charge (electrons). But showing how positive charge moves through water has been difficult because water molecules are not spectators in the process, Johnson said, but rather "are in fact intrinsic to the effect."

The researchers used advanced laser spectroscopy and mass spectrometry techniques to identify the presence and movement of a proton in the three-dimensional structure of the H+(H2O)21 cluster, an extremely stable group of first observed by the late Nobel laureate and Yale professor John Fenn.

Slow cooling of the water cluster close to absolute zero was key, allowing the nano-crystals (all of the individual H+(H2O)21 clusters) to freeze into the same shape, removing clutter that obscured previous spectroscopic pictures.

The results showed that the cluster has unique infrared signatures for each type of water molecule in the network, from the ones closest to the proton to the ones farthest away. These signatures were specific enough to provide detailed insight into how the proton affects each molecule, and can be used to test and improve the most advanced theoretical calculations.

"It will be important to follow how these signatures evolve with cluster size and increasing temperature," said lead author Joseph Fournier, a graduate student in Johnson's lab.

The paper, published May 30, is titled "Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster."

Explore further: How to count the messenger out: Mapping the structure of protonated water clusters

More information: "Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster." Joseph A. Fournier, Christopher J. Johnson, Conrad T. Wolke, Gary H. Weddle, Arron B. Wolk, Mark A. Johnson. Science 30 May 2014: Vol. 344 no. 6187 pp. 1009-1012 DOI: 10.1126/science.1253788

Related Stories

Photosynthesis reimagined

March 28, 2014

( —Using water as fuel has been a recurrent theme of science fiction since the days of Jules Verne. A recent discovery, however, may bring it one step closer to science fact by mimicking the very first steps of ...

Satisfying metals' thirst vital for high-capacity batteries

June 2, 2014

( —When a multiply charged aluminum or magnesium cation encounters a single water molecule, the result can be explosive. The metal ion rips an electron from the water molecule, causing a molecular-level explosion, ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.