New data bolsters Higgs boson discovery

Jun 23, 2014
A graphic shows particle traces extending from a proton-proton collision at the Large Hadron Collider in 2012. The event shows characteristics expected from the decay of the Standard Model Higgs boson to a pair of photons. Further analysis of collisions in 2011 and 2012 has found evidence that the Higgs also decays into fermion particles, according to a new paper in Nature Physics to which Rice University scientists contributed. Credit: CERN

( —If evidence of the Higgs boson revealed two years ago was the smoking gun, particle physicists have now found a few of the bullets.

The European Organization for Nuclear Research (CERN) published research in Nature Physics this week that details evidence of the direct decay of the Higgs boson to fermions, among the particles anticipated by the Standard Model of physics.

The finding fits what researchers expected to see amid the massive amount of data provided by the Large Hadron Collider (LHC). The world's largest collider smashed protons together in hope that the encounter would produce the short-lived Higgs boson, leaving signs of its decay in the traces recorded by experiments designed and built at Rice and elsewhere.

Authors of the paper by the Compact Muon Solenoid (CMS) collaboration include Rice researchers Paul Padley, a professor of physics and astronomy, and Karl Ecklund, an assistant professor of physics and astronomy.

"In July 2012, we knew we had discovered some sort of boson, and it looked a lot like it was a Higgs boson," Padley said. "To firmly establish it's the Standard Model Higgs boson, there are a number of checks we have to do. This paper represents one of these fundamental checks."

The decadeslong search for the Higgs, which physicists believe gives mass to the fundamental particles, has been a primary focus of the $6 billion LHC. The CMS is one of two main experiments at the collider. The other, ATLAS, has also found strong evidence of from decaying Higgs bosons, though that team has yet to publish its results.

The collider is shut down for an upgrade to be completed next year, but the mountain of data from the first run of experiments through 2012 has yielded spectacular results, Padley said. Sifting through the data, he said, is "like doing the analysis at a crime scene, when they look to see which gun fired the bullets. As we find more evidence, it looks more like a Standard Model Higgs boson. This paper is important because it really establishes that it's decaying to fermions."

Fermions are even more elemental particles that include quarks and leptons (which include another subparticle, electrons). They exist for only a minute fraction of a second after emerging from the decaying boson, but because they're moving away from the collision at tremendous speed, they can be tracked.

Capturing their traces takes highly sophisticated equipment, Ecklund said. "I've been working on the pixel detector, the innermost part of CMS," he said. "It's a bit like a 66-million-pixel video camera that takes 40 million frames a second. We're basically watching the collisions of the proton beams and looking for all the charged particles that come out."

Layers of electronic sensors that surround the collider track many kinds of particles, each of which leaves a unique signature that includes its lifetime and path. "We're able to connect the dots to see these tracks," Ecklund said. "For the Higgs studies, particularly in the case of the fermions, we're looking for Higgs-to-bottom quarks and Higgs-to-tau (antitau) pairs. Taus are heavy versions of the electron."

The Rice researchers are building and testing CMS components for the upgraded LHC, which they expect CERN will boot up next spring for the second run of experiments starting in the summer of 2015. "It's going to be focused on new things that could appear at higher energies," Ecklund said. "One definite target will be seeing more Higgs bosons, which should tell us a lot more about their properties.

"The main excitement is going to be that because the energy is higher, we could produce the Higgs in association with other particles," he said. Of particular interest will be evidence of heavy top quarks and how they relate to the Higgs. "They should actually have the strongest coupling to the Higgs because the top quark and the Higgs combined make a fairly heavy thing to produce."

Ecklund said the upgraded LHC should provide the necessary energy to produce many more top quarks and Higgs bosons. "We're interested in understanding how the top quark fits into the Standard Model and whether, since it's so heavy, it could have a special role in relating to the Higgs. Maybe there are hints of new physics that aren't in the Standard Model," he said. "We know the is incomplete."

"The discovery of the Higgs boson was a beginning, not the end," Padley said. "The first step is to measure with great precision the properties of the Higgs boson we've discovered, and then use it as a tool for further discovery.

"We're trying to probe questions about the universe and dark matter. In fact, there was a big study of the priorities in particle physics, and the No. 1 priority for the entire field is to study the properties of this and use it as a tool for discovery. This represents a step down that path."

Explore further: Evidence found for the Higgs boson direct decay into fermions

More information: Read the abstract at… t/abs/nphys3005.html

add to favorites email to friend print save as pdf

Related Stories

ATLAS sees Higgs boson decay to fermions

Nov 28, 2013

The ATLAS experiment at CERN has released preliminary results that show evidence that the Higgs boson decays to two tau particles. Taus belong to a group of subatomic particles called the fermions, which ...

Higgs boson machine-learning challenge

May 20, 2014

Last week, CERN was among several organizations to announce the Higgs boson machine-learning challengeExternal Links icon – your chance to develop machine-learning techniques to improve analysis of Higgs data.

The Higgs boson: One year on

Jul 05, 2013

A year ago today, physicists from the ATLAS and CMS experiments at CERN proudly announced the discovery of a new boson looking very much like the Higgs boson.

Could 'Higgsogenesis' explain dark matter?

Oct 22, 2013

( —The recently discovered Higgs boson is best known for its important role in explaining particle mass. But now some physicists are wondering if the Higgs could have played an equally significant ...

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (5) Jun 23, 2014
We should stop with these experiments. The Higgs boson was predicted using logic and quantum analysis. There will always be another "Higgs", just pump in enough energy. There is no permanence to any of these quanta of energy, because they will always decay into the lowest generation of particles, with which we are already familiar, so there is really no point. We have learned and now understand how and why this works, and that is enough, in my opinion.
Jun 23, 2014
This comment has been removed by a moderator.
1 / 5 (3) Jun 23, 2014
The Big Bang theory is one reason Particle Physics is in a wrong course and the Higgs Bosson is heading towards a dead end or onto a sub sub sub sub atomic particle that will get you nowhere. For one, the Big Bang cannot occur without the source of all this necessary elements and ingredients to start the bang. Nothing can come from nothing and this Higgs Boson is only doing it the wrong way, so wrong that every steps it takes leads to nowhere. The Higgs particle does not give mass neither it is the source of mass but merely response to reactions from unknown source like the Dark Matter for instance. There are so many unidentified things in the universe that we cannot understand nor fathom. Dark Matter may be behind this condition that causes Higgs Boson to react, so we don't have that enough information to really justify that Higgs field really exists.
1 / 5 (1) Jun 24, 2014
Higgs boson is not more that momentary flux of quantum vacuum energy released by does not give mass to particles.
Jun 24, 2014
This comment has been removed by a moderator.