From biomass soup to new, useful raw materials

June 17, 2014
From biomass soup to new, useful raw materials

Biomass is not oil. However, it is going to have to replace the raw materials currently made from fossil sources if we are to sustainably satisfy the demand for plastics, solvents, paints and adhesives. This is quite a challenge, as there are many different forms of biomass and its composition varies from year to year, explained Harry Bitter upon accepting his appointment as Professor of Biobased Commodity Chemistry at Wageningen University on 12 June.

The use of to replace crude oil immediately runs up against a mountain of problems if you want to use it for the same purposes, said Professor Bitter in his inaugural address entitled Chemicals from biobased feedstocks – integration on multiple length scales. There is every reason to make the switch from crude oil, as it is slowly running out, and because biomass is CO2-neutral. However, biomass is not oil – it is usually wet, contains a lot of inflexible, 'difficult' oxygen at the molecular level, and its composition is like the soup of the day – it largely depends on the main ingredient of the harvest that year. In solid form, it is also more difficult to transport, comes from several locations and is only available at a particular time of year. 'And from this turbulent biomass soup, we are going to have to obtain our ', said Professor Harry Bitter to sum up his research challenge.

The trick is to keep the useful molecular structures in the biomass or to find a simple way of transforming them into useful components to replace the alternatives. 'If it sounds like we can already do this, then I am afraid I am going to have to disappoint you', said Professor Bitter. His research will focus primarily on simplifying the conversions using catalysis – a chemical acceleration process – so that organic molecules in the biomass soup can be quickly selected and converted into useful components for making, for example, food additives, medicines, adhesives, paints, plastics or biodiesel. After conversion, the required products are still mixed in amongst the residual biomass, 'Which is why it is also important to be find ways to separate them, for example using membranes or by collecting them as a solid or gas.'


'What we therefore need is what I call tiptop chemistry and technology', said Professor Bitter. Such chemistry turns a variable input into a tailored output. It is already possible to fish certain components out of the biomass to convert into useful ingredients, such as lactic acid. Chains of lactic acid units form poly lactic acid, from which biodegradable plastic beakers can already be made. 'The question is whether we can speed up the fermentation process that makes this even more effective, using chemical catalysts', said Harry Bitter. Another example is a nylon-like material made from biomass that is already used in flexible petrol pump hoses. 'Ultimately, however, we need to use 100% of the biomass', said the professor, 'which is why you need to work out exactly which molecules in the biomass you want to use for which purpose.' In 10 to 20 years he expects we will have made significant progress in this area.

Explore further: Sensible use of biomass: A chemical industry based on renew

Related Stories

Sensible use of biomass: A chemical industry based on renew

November 14, 2011

( -- Our industrialized world is largely dependent on fossil resources, whether for the generation of energy, as a fuel, or as a feedstock for the chemical industry. The environmental problems related to this ...

New process speeds conversion of biomass to fuels

February 8, 2013

(—Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. The team led by Los Alamos National Laboratory researchers elucidated the chemical mechanism of the critical ...

Scientists improve biomass-to-fuel process

May 1, 2013

( —Los Alamos scientists published an article in the scientific journal Nature Chemistry that could offer a big step on the path to renewable energy.

Chemical products on a renewable basis

February 4, 2014

A breakthrough in the use of renewable raw materials in chemical production has been achieved by Karlsruhe Institute of Technology (KIT) and its industrial partner AVA Biochem: In January this year, a facility at AVA Biochem ...

Fueling aviation with hardwoods

May 8, 2014

A key challenge in the biofuels landscape is to get more advanced biofuels—fuels other than corn ethanol and vegetable oil-based biodiesel—into the transportation pool. Utilization of advanced biofuels is stipulated by ...

Sustainable algae cultivation making headway

June 11, 2014

Four years after the first optimistic calculations, the experimental cultivation of algae appears to be meeting expectations. Production costs have been more than halved, while the profit made on some crop components already ...

Recommended for you

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.