Bacterial nanometric amorphous Fe-based oxide as lithium-ion battery anode material

Jun 25, 2014
Figure 1. (a) High-magnification SEM image of L-BIOX. (b) TEM image showing a early stage of the formation of L-BIOX around rod-like bacterial cells lined up head to tail.

Leptothrix ochracea is a species of iron-oxidizing bacteria that exists in natural hydrospheres where groundwater outwells worldwide. Intriguingly, the bacterium produces Fe3+-based amorphous oxide particles (ca 3 nm diameter; Fe3+:Si4+:P5+~73:22:5) that readily assemble into microtubular sheaths encompassing the bacterial cell (ca 1 μm diameter, ca 2 mm length, Fig. 1). The mass of such sheaths (named L-BIOX : Biogenous Iron Oxide produced byLeptothrix) has been usually regarded as useless waste, but Jun Takada and colleagues at Okayama University discovered unexpected industrial functions of L-BIOX such as a great potential as an anode material in lithium-ion battery.

Since use of the that is a powerful electric source for portable electric devices has expanded to a variety of new areas such as transportation and electric power storage, improvement of battery capability and effort to develop new electrode materials have been demanded. The general processes of nanosizing and appropriate surface modification which are required for tuning the battery property are complicated and cost-ineffective. By contrast, L-BIOX is a cost-effective and easily-handled , since its basic texture is composed of nanometric particles.

The charge-discharge properties of simple L-BIOX/Li-metal cells were examined at current rates of 33.3mA/g (0.05C) and 666mA/g (1C) for voltages of 0 to 3V over 50 cycles (Fig. 2). In addition, electronic and structural changes were microscopically analyzed by TEM/STEM/EELS and 57Fe Mӧssbauer spectroscopy.

Bacterial nanometric amorphous Fe-based oxide as lithium-ion battery anode material
Figure 2. Charge-discharge curves at 666 mA/g between 0 and 3.0 V. Inset shows the cycle-life performance.

Results showed that L-BIOX exhibited a high potential as an Fe3+/Fe0conversion . Its capacity was significantly higher than the conventional carbon materials. Notably, the presence of minor components of Si and P in the original L-BIOX nanometric resulted in specific and well-defined electrode architecture. Since Fe-based electrochemical center is embedded in Si/P-based amorphous texture, an undesirable coagulation of Fe-based center is prevented.

Takada and colleagues proposed a unique approach to develop new electrode materials for Li-ion battery. This is an example showing that the iron oxides of bacterial origin are an unexplored frontier in solid-state chemistry and materials science.

Explore further: Research and applications of iron oxide nanoparticles

More information: "Bacterial Nanometric Amorphous Fe-Based Oxide: A Potential Lithium-Ion Battery Anode Material." Hideki Hashimoto, Genki Kobayashi, Ryo Sakuma, Tatsuo Fujii, Naoaki Hayashi, Tomoko Suzuki, Ryoji Kanno, Mikio Takano, and Jun Takada. ACS Applied Materials & Interfaces 2014 6 (8), 5374-5378. DOI: 10.1021/am500905y

add to favorites email to friend print save as pdf

Related Stories

Research and applications of iron oxide nanoparticles

Feb 26, 2014

From the mysteries of producing red colors in traditional Japanese Bizen stoneware to iron-oxidizing bacteria for lithium ion batteries, Professor Jun Takada is at the forefront of research on innovative ...

Charging portable electronics in 10 minutes

Jun 10, 2014

Researchers at the University of California, Riverside Bourns College of Engineering have developed a three-dimensional, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion ...

Inexpensive material boosts battery capacity

Oct 23, 2013

Battery-powered cars offer many environmental benefits, but a car with a full tank of gasoline can travel further. By improving the energy capacity of lithium-ion batteries, a new electrode made from iron ...

Composite battery boost

Dec 04, 2013

(Phys.org) —New composite materials based on selenium (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to ...

Recommended for you

Tough foam from tiny sheets

33 minutes ago

Tough, ultralight foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice University.

Graphene surfaces on photonic racetracks

Jul 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

Jul 28, 2014

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

Jul 28, 2014

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0