Violent gamma-ray outbursts near supermassive black holes

May 23, 2014
An artist’s view of the nuclear region of an active galaxy: a disk of accreting material (brown/yellow) spirals in onto the central supermassive black hole (black). A powerful, collimated radio jet (blue) is launched perpendicular to the disk. Inside the jet gamma-ray photons are also produced. The new findings demonstrate that the gamma-ray emission originates from the innermost region of the radio jet (white). For the active galaxy 3C 454.3 the authors estimate a distance of only a few light years from the supermassive black hole. The galaxy is in the direction of Pegasus and its signal reaches Earth after a light travel time of approx. 7 billion years.              Credit: © NASA JPL/CalTech

(Phys.org) —Where in powerful jets of distant active galaxies—the mightiest and most energetic objects known—are the violent outbursts of high energy gamma-ray emission produced? Very close to the central supermassive black hole and accretion disk powering these systems, or at larger distances from the "central engine," i.e. further downstream in the jet? New insights into this long-standing question became possible recently, thanks to intensive, multi-frequency radio observations of powerful active galaxies.

An international team of astronomers led by Lars Fuhrmann from the Max Planck Institute for Radio Astronomy in Bonn, Germany, used some of the best single-dish radio telescopes for several years, in combination with NASA's Fermi Gamma-ray Space Telescope, to study the place where the outbursts occur. For the first time a connection between dramatic outbursts of high energy gamma-ray emission and their counterparts at many radio frequencies has been established for a large sample of galaxies. Measuring delays in time between these events finally produced better constraints on the exact location in the vicinity of supermassive where the gamma-ray outbursts take place.

The results were published in the current issue of Monthly Notices of the Royal Astronomical Society.

Special types of distant active galaxies and their innermost central regions show extreme physical processes. In the vicinity of a spinning supermassive black hole (billions of times heavier than our Sun) an enormous amount of energy is released, often in the most energetic form of light: high energy gamma-ray photons at mega- or even gigaelectronvolt (MeV/GeV) energies. This energy output is produced by feeding the black hole from surrounding stars, gas and dust. Matter is spiraling in onto the black hole and strong magnetic fields channel some of the infalling gas into two powerful, well collimated "jets" of plasma accelerating away from the center with velocities approaching the speed of light. Many of the connected physical processes are not understood in detail so far, for example the production of high-energy gamma-ray photons and their place of origin inside the jet, or the origin of strong outbursts of emission across the whole electromagnetic spectrum. New instruments and observing programs covering a large fraction of the whole energy spectrum nearly simultaneously allow new insights into the extreme physics of these objects to be obtained.

Telescopes utilized for the data acquisition in the radio and y-ray regime. Clockwise from upper left: Effelsberg 100m, APEX 12m, Fermi g-ray observatory and IRAM 30m. Credit: © MPIfR/N. Junkes (100m), APEX-Team (12m), NASA E/PO, Sonoma State University, Aurore Simonnet (Fermi), MPIfR (30m).

Using a combination of three of the world's most advanced single-dish radio observatories, namely the Effelsberg 100-m, IRAM 30-m and APEX 12-m telescopes covering quasi-simultaneously 11 radio frequency bands (the so-called Fermi-GST AGN Multi-frequency Monitoring Alliance, F-GAMMA program), the team of scientists was able to monitor the frequently occurring radio outbursts of about 60 powerful active galaxies over many years. "Since the era of the EGRET instrument on the Compton Gamma Ray Observatory in the 1990s, it has been discussed whether outbursts of radio emission are physically connected to similar events occurring at gamma rays" says Anton Zensus, Director at the Max Planck Institute for Radio Astronomy (MPIfR) and Fermi Affiliated Scientist. "Now with the combination of F-GAMMA radio and Fermi gamma-ray long-term data, and thanks to special analysis techniques, we finally know it!"

In addition to radio data within the F-GAMMA program, the research team used gamma-ray observations of NASA's Fermi Gamma-ray Space Telescope (launched in 2008), and a new statistical method to add up many radio and gamma-ray events. "It was illuminating to see the statistical noise going down and the average correlation popping up" explains Stefan Larsson, from Stockholm University. "This finally demonstrates that a significant connection exists, even when using different radio frequencies" he continues. The study furthermore shows that the radio outbursts arrived at the telescopes later in time than their gamma-ray counterparts, with mean delays between 10 and 80 days. "For the first time we see that the radio delays become smoothly smaller towards higher radio frequencies," adds Emmanouil Angelakis from MPIfR. "Towards higher frequencies we are looking deeper into the jet. The gamma-ray photons are thus coming from the innermost radio emitting jet regions."

Using the measured time delays the team was finally able to estimate distances of a few ten light-years or less between the radio and gamma-ray outburst regions. "Based on our delay measurements we could estimate for one of the brightest gamma-ray emitting in the sky, 3C 454.3, how far away from the most of the gamma-ray photons must have been produced. We are talking about only a few light-year distances—very close to the footpoint of the jet and the black hole itself!" proudly reports Lars Fuhrmann from MPIfR, the lead author of the paper. "This has serious implications for the physical processes producing the gamma-ray photons!" he adds. In the meantime the team is continuing to use the "Joint Eye" on the universe to collect more data and more events for detailed follow-up studies.

Explore further: Birth of black hole kills the radio star

More information: "Detection of significant cm to sub-mm band radio and gamma-ray correlated variability in Fermi bright blazars," L. Fuhrmann, S. Larsson, J. Chiang, E. Angelakis, J. A. Zensus, I. Nestoras, T. P. Krichbaum, H. Ungerechts, A. Sievers, V. Pavlidou, A. C. S. Readhead, W. Max-Moerbeck, and T. J. Pearson, 2014, MNRAS, 441, 1899-1909; mnras.oxfordjournals.org/conte… /441/3/1899.abstract, Preprint: arxiv.org/abs/1403.4170.

add to favorites email to friend print save as pdf

Related Stories

Birth of black hole kills the radio star

Dec 20, 2013

Astronomers led by a Curtin University researcher have discovered a new population of exploding stars that "switch off" their radio transmissions before collapsing into a Black Hole.

A new class of extragalactic objects

Oct 29, 2012

A blazar is a galaxy with an intensely bright central nucleus containing a supermassive black hole, much like a quasar. The difference is that a blazar can emit light with extremely high energy gamma rays ...

Recommended for you

Exoplanet measured with remarkable precision

16 hours ago

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

New star catalog reveals unexpected 'solar salad'

17 hours ago

(Phys.org) —An Arizona State University alumnus has devised the largest catalog ever produced for stellar compositions. Called the Hypatia Catalog, after one of the first female astronomers who lived in ...

New survey begins mapping nearby galaxies

Aug 18, 2014

A new survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) has been launched that will greatly expand our understanding of galaxies, including the Milky Way, by charting the internal ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

Urgelt
not rated yet May 23, 2014
They narrowed it down to tens of light years?

Doesn't sound like a breakthrough to me, but hell, I'm only an interested bystander.
Uncle Ira
2.6 / 5 (5) May 23, 2014
They narrowed it down to tens of light years?

Doesn't sound like a breakthrough to me, but hell, I'm only an interested bystander.


Google it Skippy. That sucker is billions of light years away from us. 10/4,000,000,000 is shaving close to the skin, eh?
pandora4real
1 / 5 (2) May 25, 2014
What's with the exclamation marks in all the quotes?
Uncle Ira
2.3 / 5 (3) May 25, 2014
What's with the exclamation marks in all the quotes?


What, you think that is something that Ira-Skippy is supposed to know?