Video: Neutron stars rip each other apart to form black hole

May 14, 2014

(Phys.org) —This supercomputer simulation shows one of the most violent events in the universe: a pair of neutron stars colliding, merging and forming a black hole. A neutron star is the compressed core left behind when a star born with between eight and 30 times the sun's mass explodes as a supernova. Neutron stars pack about 1.5 times the mass of the sun—equivalent to about half a million Earths—into a ball just 12 miles (20 km) across.

As the simulation begins, we view an unequally matched pair of neutron stars weighing 1.4 and 1.7 solar masses. They are separated by only about 11 miles, slightly less distance than their own diameters. Redder colors show regions of progressively lower density.

As the stars spiral toward each other, intense tides begin to deform them, possibly cracking their crusts. Neutron stars possess incredible density, but their surfaces are comparatively thin, with densities about a million times greater than gold. Their interiors crush matter to a much greater degree densities rise by 100 million times in their centers. To begin to imagine such mind-boggling densities, consider that a cubic centimeter of neutron star matter outweighs Mount Everest.

By 7 milliseconds, tidal forces overwhelm and shatter the lesser star. Its superdense contents erupt into the system and curl a spiral arm of incredibly hot material. At 13 milliseconds, the more massive star has accumulated too much mass to support it against gravity and collapses, and a new black hole is born. The black hole's event horizon—its point of no return—is shown by the gray sphere. While most of the matter from both will fall into the black hole, some of the less dense, faster moving matter manages to orbit around it, quickly forming a large and rapidly rotating torus. This torus extends for about 124 miles (200 km) and contains the equivalent of 1/5th the mass of our sun.

This video is not supported by your browser at this time.
Credit: NASA

Scientists think neutron star mergers like this produce short gamma-ray bursts (GRBs). Short GRBs last less than two seconds yet unleash as much energy as all the stars in our galaxy produce over one year.

The rapidly fading afterglow of these explosions presents a challenge to astronomers. A key element in understanding GRBs is getting instruments on large ground-based telescopes to capture afterglows as soon as possible after the burst. The rapid notification and accurate positions provided by NASA's Swift mission creates a vibrant synergy with ground-based observatories that has led to dramatically improved understanding of GRBs, especially for short bursts.

Explore further: Centaurus A: A new look at an old friend

add to favorites email to friend print save as pdf

Related Stories

Centaurus A: A new look at an old friend

Feb 06, 2014

(Phys.org) —Just weeks after NASA's Chandra X-ray Observatory began operations in 1999, the telescope pointed at Centaurus A (Cen A, for short). This galaxy, at a distance of about 12 million light-years ...

Hardy star survives supernova blast

Mar 20, 2014

(Phys.org) —When a massive star runs out fuel, it collapses and explodes as a supernova. Although these explosions are extremely powerful, it is possible for a companion star to endure the blast. A team ...

Neutron star magnetic fields: Not so turbulent?

May 06, 2014

Neutron stars, the extraordinarily dense stellar bodies created when massive stars collapse, are known to host the strongest magnetic fields in the universe—as much as a billion times more powerful than ...

Birth of black hole kills the radio star

Dec 20, 2013

Astronomers led by a Curtin University researcher have discovered a new population of exploding stars that "switch off" their radio transmissions before collapsing into a Black Hole.

Recommended for you

Fermi satellite detects gamma-rays from exploding novae

Jul 31, 2014

The Universe is home to a variety of exotic objects and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. ASU Regents' Professor Sumner Starrfield is part of a team that ...

Image: Hubble serves a slice of stars

Jul 31, 2014

The thin, glowing streak slicing across this image cuts a lonely figure, with only a few foreground stars and galaxies in the distant background for company.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
5 / 5 (1) May 14, 2014
Great animation --would've been nice to do it in much slower motion, and clocked, to make the sequence of events a little clearer --especially the initial destruction of the smaller body.
Pejico
May 14, 2014
This comment has been removed by a moderator.