Simplifying an ultrafast laser offers better control

May 14, 2014 by Stéphanie Thibault

Going back to the drawing board to find a way to overcome the technical limitations of their laser, a team led by François Légaré, professor at the INRS Énergie Matériaux Télécommunications Research Centre, developed a new concept offering a simpler laser design, control over new parameters, and excellent performance potential. Called "frequency domain optical parametric amplification" (FOPA), the concept supersedes traditional time domain amplification schemes that have been the linchpin of ultrafast laser science for 20 years. The new concept is explained in detail in an open access article in Nature Communications.

For researchers, capturing images of a moving electron is the holy grail of molecular imaging. But in their efforts to generate a that is sufficiently short and powerful to capture such an image, researchers have been held back by the fundamental limitations and unsatisfactory performance of lasers. "Our goal is to capture images of a chemical reaction using high spatial and temporal resolution," explained François Légaré, speaking at the TEDxConcordia event. "I want to shoot a video where you can actually see the atoms dancing in a chemical reaction."

Amplifying laser pulses in the frequency domain rather than the time domain also overcomes certain technical constraints, among them the ability to access multiple different frequencies simultaneously and control them independently. In addition, higher light pulse energy can be achieved with the new concept. "Our approach holds promise for high-power, broad spectrum, few-cycle laser sources," said the young researcher.

In the proof of concept presented in the Nature Communications article, Professor Légaré's team demonstrated that FOPA generates pulses comparable to lasers using time domain amplification in the given conditions: 1.5 mJ, 1.8 microns, 12 fs duration corresponding to 2 optical cycles. Research associate and lead author Bruno Schmidt points out that not only does the FOPA approach open up access to parameters that could not previously be controlled, it also eliminates many complex assembly components. "The logic underpinning this concept could be applied to other types of applications," he added, "so we believe it will allow us to look at nonlinear optics in a whole new light." Optimistic and ambitious, Bruno Schmidt plans to market the innovations stemming from his work, even founding his own company, few-cycle Inc.

Explore further: Nonlinear optical materials convert terahertz radiation into infrared light

More information: The article entitled "Frequency domain optical parametric amplification" appeared in the Nature Communications journal on May 7, 2014.… full/ncomms4643.html

add to favorites email to friend print save as pdf

Related Stories

X-rays in the fast lane

May 10, 2013

X-ray free-electron lasers (XFELs) produce higher-power laser pulses over a broader range of energies compared with most other x-ray sources. Although the pulse durations currently available are enormously ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Steering chemical reactions with laser pulses

Apr 23, 2014

With ultra-short laser pulses, chemical reactions can be controlled at the Vienna University of Technology. Electrons have little mass and are therefore influenced by the laser, whereas the atomic nuclei ...

Recommended for you

Understanding spectral properties of broadband biphotons

Mar 26, 2015

Advances in quantum optical technologies require scientists to control and exploit the properties of so-called biphotons. Biphotons occur when two photons become 'quantum-entangled' - spatially separate entities ...

Scientists build a nanolaser using a single atomic sheet

Mar 24, 2015

University of Washington scientists have built a new nanometer-sized laser—using the thinnest semiconductor available today—that is energy efficient, easy to build and compatible with existing electronics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.