Tomato turf wars: Benign bug bests salmonella; tomato eaters win

May 05, 2014

Scientists from the U.S. Food and Drug Administration (FDA) have identified a benign bacterium that shows promise in blocking Salmonella from colonizing raw tomatoes. Their research is published ahead of print in the journal Applied and Environmental Microbiology.

When applied to Salmonella-contaminated tomato plants in a field study, the bacterium, known as Paenibacillus alvei, significantly reduced the concentration of the pathogen compared to controls.

Outbreaks of Salmonella traced to raw tomatoes have sickened nearly 2,000 people in the US from 2000-2010, killing three. Since the millennium, this pathogen has caused 12 multistate outbreaks of food-borne illness—more than one each year. It was this carnage that provided the impetus for the study, according to corresponding author Jie Zheng, of the FDA.

"The conditions in which tomatoes thrive are also the conditions in which Salmonella thrives," says coauthor Eric W. Brown, also of FDA, "but we knew that if we could block Salmonella from infecting the tomato plant, we could reduce its risk of infecting the person who eats the tomato."

The logic behind the work is simple. Many innocuous bacterial species thrive within the tomato-growing environment.

"We hypothesized that such an organism could be found that possessed the ability to outcompete or chemically destroy Salmonella," says Zheng. "After screening many hundreds of potential biocontrol strains of bacteria that were isolated from farms and natural environments in the Mid-Atlantic region, we found about 10 isolates of bacteria representing very different genera and species that could curb the growth and/or destroy Salmonella in our test assays."

Many of these were as pathogenic to humans as is Salmonella, but two isolates, belonging to the environmentally friendly species, P. alvei, strongly inhibited growth of Salmonella.

"This bacterium also has no known history of human pathology, making it a great candidate as a ," says Zheng.

"While farmers and agricultural scientists have long used microbes to prevent plant diseases, we now have the opportunity to add a naturally-occurring microbe to a crop in the field with the goal of preventing human disease," says Zheng. "Our ambitions are now to extend this microbial approach to cantaloupe, leafy greens, and other crops that have lately been responsible for outbreaks of food-borne Salmonella and E. coli."

Explore further: Precise conditions needed for tomatoes to spread salmonella

More information: The manuscript can be found online. The final version of the article is scheduled for the July 2014 issue of Applied and Environmental Microbiology.

add to favorites email to friend print save as pdf

Related Stories

Do people and pigs share salmonella strains?

Apr 03, 2014

If antimicrobial-resistant Salmonella is showing up in pigs, then are bacon-loving people also at risk? In his latest research, NC State population health and pathobiology professor Sid Thakur looks at serotypes, ...

Salmonella at Ind. farm matches outbreak strain

Aug 28, 2012

(AP)—The Food and Drug Administration says salmonella found at a cantaloupe farm in southwestern Indiana matches the "DNA fingerprint" of the salmonella responsible for a deadly outbreak that sickened people in 21 states.

FDA: Farm tied to salmonella outbreak was unclean

Oct 03, 2012

(AP)—A federal inspector found two strains of salmonella and unclean conditions at an Indiana cantaloupe farm's fruit-packing plant during visits following a deadly outbreak linked to its melons.

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0