Superheavy chemistry, one atom at a time

May 21, 2014
(Left to right) Ken Gregorich, Jackie Gates, Heino Nitsche

It's now more or less official: element 117 will have a seat at the periodic table. Earlier this month an international team of scientists that included researchers from Lawrence Berkeley National Lab's Nuclear Science Division found two atoms of superheavy element 117. The experiment, conducted at a particle accelerator at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, builds on the previous 117 experiment by a different team working in Dubna, Russia in 2010 that identified six atoms of the superheavy element.

Heino Nitsche leads Berkeley Lab's research. The group is involved in not only in the verification of new elements like 117, but also in figuring out the best ways to do chemistry experiments with the few, fleeting on the roster of superheavies. He and staff scientists Kenneth Gregorich and Jackie Gates recently discussed their roles in the new 117 experiment. They also described how their team, which includes scientist Greg Pang, does chemistry one atom at a time.

First of all, why do superheavy elements matter?

Heino Nitsche: The question is why elements matter, period. It's because they are part of our daily life, and we are moving forward with our understanding of science. When I was young, we had element 106 and we thought that was it, that we'd never get any higher. In the last 30 years, we as a community have created elements 107 to 118 and confirmed most of these. So we have done the unbelievable, the unthinkable.

How were you involved in the most recent experiment to produce element 117?

Jackie Gates: Whenever you have any new results, you always want to make sure somebody else can verify it. That's what we did. They did a data analysis at GSI and we also got a copy of the raw data. We wrote our own analysis code so we could look and see if we agreed with what they saw. We just brought a different point of view in the way that we approached the data.

Why are chemistry experiments of superheavy elements important?

Nitsche: We are trying to establish them in the and see if they are homologs to the other elements in their group. The principle of homologs is that as you go down the periodic table, all the elements in a column share properties because they share the same electronic structure—the outer electrons that bind to other atoms are in the same configuration. So far we've been lucky—they're all homologs.

Why wouldn't they be homologs?

Ken Gregorich: Because of relativistic effects. In superheavy atoms, the nucleus is so large that electrons around it move at close to the speed of light. This could mean that superheavy elements behave differently than other elements in their column. For instance, at one point, it was believed that element 114 might act like a noble gas, like helium or neon, but last year we found it behaves more like a volatile metal.

The 117 experiment, which lasted months, detected only two atoms of the element, and they decayed in less than a second. That's too fast to do chemistry, but elements like 114 stick around for a little longer. How do you do chemistry one atom at a time?

Gregorich: Actually, most of the time, we're doing chemistry with zero atoms. You can run an experiment to do 1000 chemical separations and maybe 10 or 20 times you get one atom through it. Element 114 has a half-life of a couple seconds to 30 seconds depending on the isotope. That's enough time to do these separations in liquid and in gas, and the way the atom interacts with the liquid or gas tells us its chemical properties.

What's next for single-atom chemistry?

Nitsche: We want to know if element 114 is more like lead or more like mercury. In the fall of 2014 we're going back to GSI to do an experiment with even more specialized equipment to answer this question. At Berkley Lab, we are developing a microfluidic separation and detection system to establish aqueous chemistry experiments for 112 and 114, copernicium and flerovium, respectively. We are transferring an atom in very small amounts of liquid into an organic extractant on a microfluidic chip, and then measure it on another microchip detector. Because microfluidics happen in a small space, you can speed up the separation, and do it in less than a second. That's a time scale we're aiming for.

Explore further: Nuclear missing link created at last: Superheavy element 117 (Update)

Related Stories

Superheavy element 117 confirmed

May 2, 2014

( —The stage is set for a new, super-heavy element to be added to the periodic table following research published in the latest Physics Review Letters. Led by researchers at Germany's GSI laboratory, the team created ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.