Supercomputing for materials simulation

May 09, 2014
Supercomputing for materials simulation
Combining quantum and classical physics is one of the biggest challenges in modelling.

The National Physical Laboratory (NPL) and international partners are using advanced supercomputers to develop a new framework for accurate materials simulation.

The partnership between NPL, IBM Research, the University of Edinburgh and the Hartree Centre for aims to help scientists understand and describe the complex interactions between , and how they are linked to a material's properties

The Science and Technology Facilities Council (STFC), which operates the Hartree Centre, has published a case study that explains how this work could help save costs in product development by predicting materials properties where experiments are difficult or expensive.

At NPL, materials simulation is a key tool used in measurement science to aid data interpretation. "Improving the accuracy of the model predictions is a critical step in developing innovative approaches to measurement challenges," explains NPL's Vlad Sokhan, who is working on the project.

Simulations on a fundamental level involve electrons and atoms. Electrons are fast, requiring quantum mechanical description, while atoms are significantly slower and described using classical dynamics. Developing complex methods which combine both quantum and classical parts is one of the biggest challenges in modelling.

The partnership has already successfully demonstrated a new method based on a coarse-grained electronic structure for a number of test cases, which would be impossible to tackle using other approaches. The continued success of the project has the potential to enable and increase the accuracy of materials simulation over a much wider range of conditions and environments.

Explore further: Improving electron control

More information: The full case study is available online: www.stfc.ac.uk/3168.aspx

add to favorites email to friend print save as pdf

Related Stories

Quantum model helps solve mysteries of water

Jun 04, 2013

A research team from the National Physical Laboratory (NPL), the University of Edinburgh and IBM's TJ Watson Research Center has revealed a major breakthrough in the modelling of water that could shed light ...

Improving electron control

Dec 05, 2013

In principle, the strange features of quantum mechanics can be accessed using single electrons as carriers of quantum information. However, while electrons can be captured in solid-state electrostatic traps, ...

Recommended for you

Refocusing research into high-temperature superconductors

5 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

11 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

11 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0