A new subdetector for LHC's ATLAS

May 22, 2014 by Abha Eli Phoboo
A team of physicists and engineers inspect the subdetector before its insertion into the ATLAS experiment. Credit: Claudia Marcelloni De Oliveira/CERN

Closest to the beam pipe where particle collisions will occur in the very heart of ATLAS, a new subdetector – the Insertable B-Layer – was recently put in place. The IBL team had been developing and practicing the insertion procedure and tooling for two years because of the operation's delicate nature. Every possible test had been carried out. Unlike the dry runs above ground, the final procedure in the ATLAS cavern allowed only one chance.

The insertion gap between the Inner Supporting Tube and the IBL detector is only 0.2 mm and the gap between the supporting tube and the Pixel is 1.9 mm. Despite this narrow space, the procedure went smoothly and the work was completed ahead of schedule.

"The final insertion was the culmination of all the developments we've been doing," says Heinz Pernegger, project leader of the Pixel Detector. "The mockups and demonstrations we've gone through, we had practiced so many times."

"It is so satisfying to see the IBL in place," says Raphaël Vuillermet, who coordinated the engineering and installation. "The project started from a blank sheet of paper, with many problems to solve and few ideas about how to tackle them. Since then, we've gone through various phases. It is a very compact sub-detector because it had to contain all the services required for operation and still fit inside a tiny space that didn't even exist previously, as only the reduction of the beam pipe diameter has allowed the insertion of this additional Pixel layer."

A tight fit! A physicist checks the subdetector as it is inserted into the ATLAS experiment. Credit: Claudia Marcelloni de Oliveira/CERN

The problem given was that with higher luminosity in the LHC's next run, significant radiation damage of the inner layers of the detector could occur, which meant ATLAS would lose tracking efficiency, especially in tagging the decay of the beauty quark – crucial for physics analyses. The idea was to minimize risks by creating an insertable layer instead of replacing the existing B-layer in the Pixel Detector. The IBL was born but the only way to integrate it was by shrinking the diameter of the beam pipe and inserting it into the gap between the Pixel Detector and the pipe.

The IBL is now the new fourth layer in the inner detector region of ATLAS, an additional point for tracking particles. More points mean better precision which is always good for physics.

Making space wasn't the only challenge for the IBL project. Much of the technology did not exist. Increased luminosity in the LHC meant the IBL has to cope with high radiation and higher particle occupancy because of its proximity to the particle interaction point in the beam pipe. This also meant the number of hits on the detector and the amount of data collected will increase substantially. Faster read-out chips and two different silicon sensor technologies were developed. Pixel size was reduced to 50 by 250 micrometres, and a CO2-based cooling system was introduced as opposed to the C3F8. New carbon foam structures were invented to support the modules that make up the IBL. These staves had to be just firm enough to serve as mechanical support but flexible enough to be inserted.

The Insertable B-Layer (IBL) in the final stages of insertion. This subdetector is now the fourth layer in the inner detector region of the ATLAS experiment. Credit: Claudia Marcelloni de Oliveira/CERN

As remarkable as the developments were, even more remarkable is the collaborative nature of the project. Forty-seven institutes from 15 countries were involved in the IBL team. Its success, as does everything else in ATLAS, depended on the members.

"The ambiance in the cavern during the insertion was pivotal," says Sébastien Michal, who together with Raphaël Vuillermet, coordinated the engineering and installation. "There was a lot of confidence there because of the many practice sessions, but more importantly, there was a lot of trust."

Explore further: The ATLAS Pixel Detector

Related Stories

The ATLAS Pixel Detector

September 3, 2008

With the Large Hadron Collider start-up only weeks away, SLAC researchers working on the LHC are feeling the excitement. SLAC has been involved in designing and building the ATLAS (A Toroidal LHC ApparatuS) detector since ...

Chips with everything

October 3, 2013

It looks just like a memory stick but that is where the similarity ends. Inside, the tiny black box is far more sophisticated, contains considerably more technology and is offering a revolution in space dosimetry. The tiny ...

Recommended for you

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.