Starlight, starbright: New imaging technique reveal planets near bright stars

May 29, 2014 by Sheyna E. Gifford, M.d.,
The GPI is mounted on mounted on a side port of the instrument support structure of the Gemini South telescope. Credit: Gemini Planet Observatory

The Gemini Planet Imager (GPI) was built for one purpose: imaging extrasolar planets. In the seven months since it came online, GPI is proving to be an order-of-magnitude improvement-so much so that it may rewrite the rules of planet-hunting.

Planet-hunting bears some similarity to tracking a rare species through the jungle. There are a variety of ways to know that it's there, most of which are indirect: The leaves rustling. The undergrowth is trampled. The animal's shadow appears for a fleeting moment before it fades away again. It is much the same with . We can detect them moving their parent planets ever-so-slightly via Doppler shift. We can see the light from that star dim as an -or the planet's shadow-passes in front of it. Once in a while, a young star's dust disk will have a gap in it, from which we infer the presence of a formed or forming planet. These detection methods have allowed us to catalog over 1700 exoplanets since 1994. Naturally, ultimate achievement in observation is to see the species or the planet with our own eyes. That's what the Gemini Planet Imager does best: direct detection of exoplanets.

Technically, direct detection means spatially resolving the light of a planet from the light of its parent star: taking a picture of the planet itself. Before GPI, there were serious limitations to our ability to photograph an exoplanet. The photographic exposure had to be long and the contrast between the star and the exoplanet had to be high. With GPI, what used to be a one-hour photo has become a one-minute photo. The contrast can be three orders of magnitude lower - the planet can be 1000 times dimmer - and the photo will still turn out.

This remarkable improvement in exoplanet imaging is achieved with a variety of new technologies: for example, deformable silicon Micro-Electro-Mechanical Systems (MEMS) mirrors. The mirrors can bend and flex in ways that counters atmospheric distortion. GPI also has a diffraction-suppressing coronagraph, which blocks the light from the so that the planet can be seen more clearly, and an integral field spectrograph, which allows spectra to be taken over an entire two-dimensional field of the sky. By combining these and other related technologies, images like the now-famous photo of Beta Pictoris b are produced. They reveal planets many dozens of light years away glowing with residual radiation from their formations millions of years ago.  

The bright white dot is the planet Beta Pictoris b, glowing in the infrared light from the heat released when it was formed 10 million years ago. The bright star Beta Pictoris is hidden behind a mask at the center of the image. Credit: GPI

GPI can also supply information about the exoplanet's atmospheric composition and interactions with nearby objects such as asteroid belts.

GPI was deployed on the 8-m Gemini South telescope in Chile. Its first image or "first light" took place in November 2013. Since then, GPI has done an unprecedented job of capturing Jupiter-sized objects around stars similar to our Sun.

While GPI can't see objects as small as Earth-sized planets, the technology used to make GPI's remarkable images may be able to take us to new levels of observation by watching planets like Beta Pictoris b pass in front of their stars. Planetary transits reveal an abundance of information about a planet, including mass and density, precise information about the orbit, and sometimes information about other planets in the system.

An exoplanet transit has never before been photographed. If one were to be, it could be yet another astronomic breakthrough by GPI. For instance, in addition to the usual information made available by a transit, a transiting exoplanet could be one of the few instances in which hard-to-find exomoons might be detected.

"It's a step on the road," said Bruce Macintosh, professor of physics at Stamford and the principal investigator on the international planet-hunting project. "Some day a future space telescope will use the same technology, and be able to see an Earth around one of these nearby stars."

Explore further: The search for planets and stars out of this world

Related Stories

Length of exoplanet day measured for first time

April 30, 2014

Observations from ESO's Very Large Telescope have, for the first time, determined the rotation rate of an exoplanet. Beta Pictoris b has been found to have a day that lasts eight hours. This is quicker than any planet in ...

Odd planet, so far from its star

May 13, 2014

A gas giant has been added to the short list of exoplanets discovered through direct imaging. It is located around GU Psc, a star three times less massive than the Sun and located in the constellation Pisces. The international ...

Far out: A giant exoplanet where none has been seen before

May 23, 2014

Humans have an eye for the familiar: for people, for civilizations, for planets and planetary systems that match what we have seen in the past. For this reason, as well as a few others, we rarely find something truly unique ...

Recommended for you

How to prepare for Mars? NASA consults Navy sub force

October 5, 2015

As NASA contemplates a manned voyage to Mars and the effects missions deeper into space could have on astronauts, it's tapping research from another outfit with experience sending people to the deep: the U.S. Navy submarine ...

Researchers find a new way to weigh a star

October 5, 2015

Researchers from the University of Southampton have developed a new method for measuring the mass of pulsars – highly magnetised rotating neutron stars formed from the remains of massive stars after they explode into supernovae.

Moon Express, Rocket Lab set for 2017 mission plan

October 5, 2015

In 2017 a private moon landing could make news. If the mission is successful, said GeekWire, Moon Express could become the first privately backed venture to achieve a soft lunar landing.


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) May 30, 2014
Any stars proved to have no planets yet? Would that be possible to prove with this technology?
Bob Osaka
5 / 5 (1) May 30, 2014
"tracking a rare species through the jungle." It seems Jupiter-sized and Jumbo-Jupiters are not so rare. The real rare species, small rocky Earth-sized planets in the goldilocks zone is what we're really hunting. This is a good start but we need to continue to improve upon this technology. And without a doubt we certainly will.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.