Stability lost as supernovae explode

May 15, 2014
Supernova
Credit: NASA

Exploding supernovae are a phenomenon that is still not fully understood. The trouble is that the state of nuclear matter in stars cannot be reproduced on Earth.

In a recent paper published in European Physical Journal E, Yves Pomeau from the University of Arizona, USA, and his French colleagues from the CNRS provide a new model of supernovae represented as dynamical systems subject to a loss of stability, just before they explode. Because similar stability losses also occur in in nature, this model could be used to predict before they happen. Previous studies of the creeping of soft solids, earthquakes, and sleep-wake transitions have already confirmed the validity of this approach.

The authors show that the stars' loss of stability can be described in mathematical terms as a so-called dynamical saddle-node bifurcation. This approach makes it possible to devise a universal equation describing supernovae dynamics at its onset, taking into account the initial physical conditions of stability. Unlike previous studies, this one sheds light on why the time scale of a —lasting between ten and thirty seconds—is considerably shorter than the overall pace of evolution of the star, in the billion year range.

This study also attempts to elucidate whether supernova explosions are genuine and do not result from a reversed implosion. Indeed, are believed to be initially subjected to an inward flow—as the star's core may collapse into a neutron star or a black hole—that is subsequently superseded by the violent outward flow of the supernova explosion. The authors attempt to explain this phenomenon through a detailed model, demonstrating that the star enters a global free fall following its loss of stability.

Explore further: ISOLDE sheds light on dying stars

More information: Y. Pomeau, M. Le Berre, P.H. Chavanis, and B. Denet (2013), Supernovae: an example of complexity in the physics of compressible fluids, European Physical Journal E, DOI: 10.1140/epje/i2014-14026-1

Related Stories

ISOLDE sheds light on dying stars

April 4, 2014

What happens inside a dying star? A recent experiment at CERN's REX accelerator offers clues that could help astrophysicists to recalculate the ages of some of the largest explosions in the universe.

Hubble catches stellar explosions in NGC 6984

November 8, 2013

Supernovae are intensely bright objects. They are formed when a star reaches the end of its life with a dramatic explosion, expelling most of its material out into space.

NuSTAR telescope takes first peek into core of supernova

February 19, 2014

(Phys.org) —Astronomers have peered for the first time into the heart of an exploding star in the final minutes of its existence. The feat by the high-energy X-ray satellite NuSTAR provides details of the physics of the ...

Astronomers discover new kind of supernova

March 26, 2013

(Phys.org) —Supernovae were always thought to occur in two main varieties. But a team of astronomers including Carnegie's Wendy Freedman, Mark Phillips and Eric Persson is reporting the discovery of a new type of supernova ...

Recommended for you

Final descent image from Rosetta spacecraft

September 30, 2016

A new image of comet 67P/Churyumov-Gerasimenko was taken by the European Space Agency's (ESA) Rosetta spacecraft shortly before its controlled impact into the comet's surface on Sept. 30, 2016. Confirmation of the end of ...

Scientists investigate unidentified radio sources

September 28, 2016

(Phys.org)—A team of researchers led by Andrea Maselli of the Institute of Space Astrophysics and Cosmic Physics of Palermo, Italy, has conducted an observational campaign of a group of unassociated radio sources with NASA's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.