Square Kilometre Array will see sky bubbling with exploding stars

May 02, 2014
Square Kilometre Array will see sky bubbling with exploding stars

It is hard to imagine that any astronomical phenomenon could escape our latest and most powerful telescopes, but an international research team has now forecast some of the exotic discoveries that will only be able to be studied with the forthcoming Square Kilometre Array (SKA).

The team, led by Dr Giancarlo Ghirlanda at the National Institute for Astrophysics in Italy and including CAASTRO members Dr Davide Burlon and Dr Tara Murphy from the University of Sydney, has calculated that the SKA will reveal the lingering footprints of tens of thousands of enigmatic cosmic explosions known as "gamma-ray bursts".

"With current telescopes, we see a bright gamma-ray burst somewhere in the Universe around once per day, but new radio telescopes will soon be able to see an afterglow of the explosion after the initial burst has faded away," explains CAASTRO postdoctoral researcher Dr Burlon.

"This afterglow can generally take weeks to gradually decay and teaches us incredible amounts about both the initial explosion and its neighbourhood."

The catch is that a is not an explosion that we can see from all directions but is comprised of a very narrow, energetic jet, so we need to be looking down the barrel of the jet at the right time. Otherwise it is invisible, equivalent to only seeing the beam of a laser pointer when it points directly at us.

The radio afterglow should be visible from any direction though and for long periods of time, even if we missed the burst. These afterglows without a burst are known as "orphan" afterglows – they're a phenomenon that astronomers have until now been looking for without success.

"From the rate at which we detect gamma-ray bursts, we were able to predict that with the power of a sensitive new telescope like the SKA, orphan afterglows should be seen 700 times more often than their gamma-ray bursts." says Dr Burlon.

"The unprecedented sensitivity and wide field-of view of the SKA means that orphan afterglows should be visible for months or even years before eventually disappearing – bubbling across the sky more than ten thousand times per year."

Of course, the SKA's view of the sky will be full of all sorts of objects and events, such as supernova explosions and flaring black holes that are more common than orphan afterglows.

"In this new era of radio astronomy, one of the challenges will be to disentangle these different classes of radio sources." says Dr Tara Murphy, CAASTRO Associate Investigator and project leader of the "Variables and Slow Transients" survey with the Australian SKA Pathfinder (ASKAP).

The SKA will join the Australian SKA precursor telescope ASKAP and the South African SKA precursor MeerKAT in painting an entirely new picture of the "radio sky".

"The SKA will not only allow us to finally see these orphan afterglows but help us understand how gamma-ray bursts produce such powerful, narrow jets and will cast new light on the big question of just what causes gamma-ray bursts in the first place," concludes Dr Ghirlanda.

Explore further: Birth of black hole kills the radio star

More information: G. Ghirlanda, D. Burlon, G. Ghisellini, R. Salvaterra, M. G. Bernardini, S. Campana, S. Covino, P. D'Avanzo, V. D'Elia, A. Melandri, T. Murphy, L. Nava, S. D. Vergani, G. Tagliaferri: "GRB orphan afterglows in present and future radio transient surveys" in The Publications of the Astronomical Society of Australia (PASA). arXiv:1402.6338 [astro-ph.HE] arxiv.org/abs/1402.6338

add to favorites email to friend print save as pdf

Related Stories

Birth of black hole kills the radio star

Dec 20, 2013

Astronomers led by a Curtin University researcher have discovered a new population of exploding stars that "switch off" their radio transmissions before collapsing into a Black Hole.

Study of gamma-ray bursts afterglow surprises scientists

Apr 30, 2014

Research from an international team of scientists led by the University of Leicester has discovered for the first time that one of the most powerful events in our universe – Gamma-Ray Bursts (GRB) – behave ...

Glimpsing the infrastructure of a gamma-ray burst jet

Dec 04, 2013

(Phys.org) —A new study using observations from a novel instrument provides the best look to date at magnetic fields at the heart of gamma-ray bursts, the most energetic explosions in the universe. An international ...

Fermi and Swift see 'shockingly bright' burst

May 03, 2013

A record-setting blast of gamma rays from a dying star in a distant galaxy has wowed astronomers around the world. The eruption, which is classified as a gamma-ray burst, or GRB, and designated GRB 130427A, ...

Light dawns on dark gamma-ray bursts (w/ Video)

Dec 16, 2010

(PhysOrg.com) -- Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, ...

Recommended for you

Swirling electrons in the whirlpool galaxy

11 hours ago

The whirlpool galaxy Messier 51 (M51) is seen from a distance of approximately 30 million light years. This galaxy appears almost face-on and displays a beautiful system of spiral arms.

A spectacular landscape of star formation

17 hours ago

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

New star catalog reveals unexpected 'solar salad'

Aug 19, 2014

(Phys.org) —An Arizona State University alumnus has devised the largest catalog ever produced for stellar compositions. Called the Hypatia Catalog, after one of the first female astronomers who lived in ...

User comments : 0