Silly Putty material inspires better batteries

May 15, 2014 by Sean Nealon
This is the silicon polymer and battery used for the research. Credit: UC Riverside

Using a material found in Silly Putty and surgical tubing, a group of researchers at the University of California, Riverside Bourns College of Engineering have developed a new way to make lithium-ion batteries that will last three times longer between charges compared to the current industry standard.

The team created silicon dioxide (SiO2) nanotube anodes for and found they had over three times as much energy storage capacity as the carbon-based anodes currently being used. This has significant implications for industries including electronics and electric vehicles, which are always trying to squeeze longer discharges out of batteries.

"We are taking the same material used in kids' toys and medical devices and even fast food and using it to create next generation materials," said Zachary Favors, the lead author of a just-published paper on the research.

The paper, "Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries," was published online in the journal Nature Scientific Reports.

It was co-authored by Cengiz S. Ozkan, a mechanical engineering professor, Mihrimah Ozkan, an electrical engineering professor, and several of their current and former graduate students: Wei Wang, Hamed Hosseinni Bay, Aaron George and Favors.

The team originally focused on silicon dioxide because it is an extremely abundant compound, environmentally friendly, non-toxic, and found in many other products.

Silicon dioxide has previously been used as an anode material in lithium ion batteries, but the ability to synthesize the material into highly uniform exotic nanostructures with high energy density and long cycle life has been limited.

There key finding was that the nanotubes are extremely stable in batteries, which is important because it means a longer lifespan. Specifically, SiO2 nanotube anodes were cycled 100 times without any loss in energy storage capability and the authors are highly confident that they could be cycled hundreds more times.

The researchers are now focused on developed methods to scale up production of the SiO2 nanotubes in hopes they could become a commercially viable product.

Explore further: Researchers developing cheap, better-performing lithium-ion batteries

More information: Paper: www.nature.com/srep/2014/14041… /full/srep04605.html

add to favorites email to friend print save as pdf

Related Stories

Lifting the lid on silicon batteries

Feb 04, 2014

(Phys.org) —Resolving the mystery of what happens inside batteries when silicon comes into contact with lithium could accelerate the commercialisation of next-generation high capacity batteries, for use ...

Researchers make breakthrough in battery technology

Feb 11, 2014

Researchers at the Materials and Surface Science Institute (MSSI), University of Limerick have made a significant breakthrough in the area of rechargeable battery technology. There is an ever-increasing demand ...

Recommended for you

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

h20dr
4.5 / 5 (2) May 16, 2014
Bring it on! Whose going to snatch up that technology and bring it to market? Soon I hope.
Pejico
May 16, 2014
This comment has been removed by a moderator.
FastEddy
3 / 5 (2) May 16, 2014
See that! You put your front feet up on the kitchen counter top, mix up some goo and stuff and ... Invention Happens!

h2odr: "... Whose going to snatch up that technology and bring it to market? ..."

Yes, Tesla Automotive should be beating a path to these guys' doorbell.