Scientists use nanoparticles to control growth of materials

May 19, 2014 by Matthew Chin
Scientists use nanoparticles to control growth of materials
An aluminum-bismuth alloy without the introduction of nanoparticles (left, at 50 microns), and after nanparticles were introduced before the alloy is cooled (right, at 500 microns) Credit: UCLA/Nature Communications

(Phys.org) —Growth is a ubiquitous phenomenon in plants and animals. But it also occurs naturally in chemicals, metals and other inorganic materials. That fact has, for decades, posed a major challenge for scientists and engineers, because controlling the growth within materials is critical for creating products with uniform physical properties so that they can be used as components of machinery and electronic devices. The challenge has been particularly vexing when the materials' molecular building blocks grow rapidly or are processed under harsh conditions such as high temperatures.

Now, a team led by researchers from the UCLA Henry Samueli School of Engineering and Applied Science has developed a new process to control molecular growth within the "building block" components of . The method, which uses nanoparticles to organize the components during a critical phase of the manufacturing process, could lead to innovative new , such as self-lubricating bearings for engines, and it could make it feasible for them to be mass-produced.

The study was published May 9 in the journal Nature Communications.

Xiaochun Li, UCLA's Raytheon Chair in Manufacturing Engineering and the principal investigator on the research, compared the new process to creating the best conditions for plants to grow in a garden.

"In nature, some seeds sprout earlier than others and the plants grow larger, preventing nearby sprouts from growing by blocking their access to nutrients or sunshine," said Li, who also is a professor of mechanical and aerospace engineering. "But if the earlier plants are on a controlled diet that limits their growth, the other plants will have a better chance to be healthy—maximizing the yield in the garden.

"We are doing this on a nanoscale, controlling growth at the atomic level by physically blocking agents of growth to obtain high-performance materials with uniformity and other desired properties. It is like an atomic diet control for material synthesis."

The method uses self-assembling nanoparticles that rapidly and effectively control the materials' as they form during the cooling—or growth—stage of the . The nanoparticles are made of thermodynamically stable materials (such as ceramic titanium carbonitride) and are added and dispersed using an ultrasonic dispersion method. The nanoparticles spontaneously assemble as a thin coating, significantly blocking diffusion of the materials.

The technique is effective for both inorganic and organic materials.

In their study, researchers demonstrated the method could be used for aluminum-bismuth alloys. Normally, aluminum and bismuth—like oil and water—cannot be completely mixed. Although they can be temporarily combined under high heat, the elements separate when the mixture is cooled, resulting in an alloy with uneven properties. But, using the nanoparticle-controlled process, the UCLA-led team created a uniform and high-performing aluminum-bismuth alloy.

"We are controlling the nucleation and growth during the solidification process in order to obtain uniform and fine-size microstructures," said Lianyi Chen, the lead author of the study and a postdoctoral scholar in mechanical and . "With incorporation of , the aluminum-bismuth alloy exhibits 10 times better performance in terms of reducing friction, which can be used to make engines with significantly improved energy efficiency."

Li said the new approach will prove useful in a broad array of applications, possibly including efforts to limit the growth of cancer cells.

Other contributors to the research include Jiaquan Xu, a UCLA engineering graduate student; Hongseok Choi and Hiromi Konishi, former postdoctoral scholars advised by Li while he was on the faculty of the University of Wisconsin – Madison; and Song Jin, a professor of chemistry at Wisconsin.

Explore further: Researchers use atomic layer deposition to grow bimetallic nanoparticles

More information: www.nature.com/ncomms/2014/140509/ncomms4879/full/ncomms4879.html

Related Stories

Glasses strong as steel: A fast way to find the best

April 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Researchers find definitive evidence of how zeolites grow

May 15, 2014

Researchers have found the first definitive evidence of how silicalite-1 (MFI type) zeolites grow, showing that growth is a concerted process involving both the attachment of nanoparticles and the addition of molecules.

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.