Solving the puzzle of a clever fungus

May 30, 2014 by David Stacey
Solving the puzzle of a clever fungus

(Phys.org) —Scientists from the CSIRO and UWA's Institute of Agriculture (IOA), with financial aid from the Grains Research and Development Corporation, have sequenced the genome of a strain of the common fungus Rhizoctonia solani and found some surprising results.

R. solani infects many plants including major crops. Currently there is no effective resistance to it, leading to serious losses. The AG8 strain of the fungus has a very broad host range and causes bare patch and root rot diseases of cereals, canola and legumes, costing Australian agriculture about $87 million annually.

It is vital to investigate R. solani in order to discover exactly how it induces disease and how a plant's immune system may be adapted to overcome infection.

The process was complicated given that R. solani has an average of eight nuclie per cell, and that there are numerous sequence mutations between these nuclei. By contrast humans have one nucleus per cell in most cell types.

"The multiple nuclei and the sequence mutations between them made assembly of its genome challenging, and required novel techniques," said the CSIRO's Dr James Hane, who is the lead author of a recently published paper about R. solani subspecies AG8 in PLoS Genetics.

"Sequencing one isolate was like mixing the pieces of different, but similar, jigsaw puzzles and then trying to put them back together in the correct position" said Winthrop Professor Karam Singh from the IOA and CSIRO.

"Having multiple nuclei is not the norm for plant pathogens. The level of diversity is similar to entire populations of other fungal pathogens having a single nucleus per cell. The difference is that all this diversity is held within one isolate," explained Professor Singh.

The researchers are investigating how this high level of diversity and potential for genome adaptability may relate to the pathogen's broad host range and why no resistant crop varieties were able to be bred in the past.

From previous investigations the team knows that two very different resistance mechanisms exist in two model plants that AG8 can infect, Medicago trunculata and Arabidopsis species. This suggests that different approaches may be needed to develop resistance against AG8 in different crop plants.

Explore further: Research shows how plant welfare is improved by fungi in soil

add to favorites email to friend print save as pdf

Related Stories

Bacteria pitted against fungi to protect wheat and barley

Jan 10, 2013

(Phys.org)—Soil-dwelling bacteria that depend on wheat and barley roots for their "room and board" could soon prove themselves helpful to the plants in return. U.S. Department of Agriculture (USDA) scientists ...

Strawberry fields forever and fungus-free

May 22, 2013

(Phys.org) —Strawberries are one of the most economically important berry crops in the world, and a high value export crop for the Australian horticultural industry.For the first time, researchers at The ...

Recommended for you

Getting a jump on plant-fungal interactions

Jul 29, 2014

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

User comments : 0