Platynereis functional advancements

May 08, 2014
The cover image of the Genetics May issue presents motifs of the "living fossil" Platynereis dumerilii and its transition to a functional laboratory model. Credit: Artwork courtesy of Florian Raible. (Copyright: Genetics)

Researchers at the Max F. Perutz Laboratories (MFPL) of the University of Vienna and the Medical University of Vienna made a breakthrough for the Platynereis model system, as they describe the first method for generating specific and inheritable mutations in the species. The method, in combination with other tools, now places this marine bristle worm in an excellent position to advance research at the frontiers of neurobiology, chronobiology, evolutionary developmental biology and marine biology. The study and a review on Platynereis dumerilii genetic methods were chosen by the renowned journal Genetics as one of the May 2014 Highlights and also got the cover image.

Many fascinating biological phenomena, of which we currently have little to no molecular understanding, can be observed in the tiny marine bristle worm Platynereis dumerilii. It displays a slow rate of evolution, which permits analyses of ancestral genes and cell types, possesses a vertebrate-type hormonal system, as well as the ability to regenerate large pieces of its body. Furthermore, its reproductive timing is controlled by multiple timers – a feature likely to be common to many other organisms. These characteristics make it an ideal model for evolutionary studies as well as for chronobiology, amongst other research fields. However, dissecting Platynereis gene function in vivo had remained challenging due to a lack of available tools.

TALENs as a new tool to engineer targeted modifications in Platynereis genes

To address this need, scientists from the Max F. Perutz Laboratories (MFPL) and the Research Platform "Marine Rhythms of Life" of the University of Vienna and supported by the VIPS (Vienna International Postdoctoral program) have now established customized transcriptional activator-like effector nucleases (TALENs) as a tool to engineer targeted modifications in Platynereis genes. These tailored enzymes bind specific DNA sequences and "cut" the genome at these locations. The repair mechanisms of the cell promptly repair the damage, however small errors in the form of insertions and deletions can be introduced during the repair process. The result is the generation of small mutations that render the protein product of the gene non-functional – allowing the generation of the first-ever Platynereis mutants.

Future directions

The researchers found out that the induced mutations are heritable, demonstrating that TALENs can be used for generating mutant lines in this bristle worm. "This new tool opens the door for detailed in vivo functional analyses in Platynereis and can also facilitate further technical developments. For example, we hope to use TALENs to insert fluorescent reporter genes into the genome. In this way we can study how gene expression is regulated across the entire lifecycle", explains first author Stephanie Bannister, VIPS Postdoc in Florian Raible's group at the Department of Microbiology, Immunobiology and Genetics at the University of Vienna. She spearheaded the establishment of the technique. "In addition, we have provided a streamlined workflow that can serve as a template for the establishment of TALEN technology in other non-conventional and emerging model organisms", Stephanie Bannister adds.

Explore further: Sex chromosomes—why the Y genes matter

More information: Stephanie Bannister, Olga Antonova, Alessandra Polo, Claudia Lohs, Natalia Hallay, Agne Valinciute, Florian Raible, Kristin Tessmar-Raible: TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. In: Genetics (March 2014). DOI: dx.doi.org/10.1534/genetics.113.161091

Juliane Zantke, Stephanie Bannister, Vinoth Babu Veedin Rajan, Florian Raible, Kristin Tessmar-Raible: Genetic and genomic tools for the marine annelid Platynereis dumerilii. In: Genetics (May 2014) DOI: dx.doi.org/10.1534/genetics.112.148254

Related Stories

Life's rhythms

Jul 04, 2013

While our "body clock" regulates our 24 hour daily routine, a woman's menstrual cycle follows a 30 day rhythm. Many marine animals, such as the worm Platynereis, synchronize their reproduction rhythm with ...

MicroRNA: A glimpse into the past

Feb 01, 2010

The last ancestor we shared with worms, which roamed the seas around 600 million years ago, may already have had a sophisticated brain that released hormones into the blood and was connected to various sensory organs. The ...

Recommended for you

Sex chromosomes—why the Y genes matter

3 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

Better mouse model enables colon cancer research

16 hours ago

Every day, it seems, someone in some lab is "curing cancer." Well, it's easy to kill cancer cells in a lab, but in a human, it's a lot more complicated, which is why nearly all cancer drugs fail clinical ...

How to get high-quality RNA from chemically complex plants

May 26, 2015

Ask any molecular plant biologist about RNA extractions and you might just open up the floodgates to the woes of troubleshooting. RNA extraction is a notoriously tricky and sensitive lab procedure. New protocols out of the ...

Plant fertility—how hormones get around

May 26, 2015

Researchers at Tokyo Institute of Technology have identified a transporter protein at the heart of a number of plant processes associated with fertility and possibly aging.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.