Plastic, 'wrong-way' dunes arise on Saturn moon Titan

May 16, 2014 by Blaine Friedlander
Plastic, 'wrong-way' dunes arise on Saturn moon Titan
Thanks to the orbital eccentricities of Saturn and its moon Titan, the equatorial dunes - made of sandlike plastic - appear to be going the wrong way.

(Phys.org) —The dunes of Titan tell cosmic tales. A Cornell senior and researchers have narrowed theories on why the hydrocarbon dunes – think plastic – on Saturn's largest moon are oriented in an unexpected direction, a solar system eccentricity that has puzzled space scientists.

Physics major George McDonald '14, who graduates May 25, attributes the oddball orientation of the to long timescale changes in Saturn's and Titan's orbit around the sun, similar to the changes that cause ice ages on Earth.

On Earth, silica forms fine sand. On Titan, sandlike dunes form from hydrocarbon grain particulate – essentially a plastic version of Earth's sand. Planetary scientists expected the dunes to respond to easterly winds. Instead, they observed via images from NASA's Cassini mission to Saturn that the equatorial dunes appear to move in the "wrong" direction – from west to east.

"I studied whether changes in Titan's climate – due to orbital variations over a 45,000-year timescale – could affect the orientations of the dunes at the equator. The results suggest that they could," McDonald said. "This could help to explain why the current dune orientations don't seem to match what we'd expect, given the modern wind circulation found today."

McDonald presented this work, "Examining Effects of Orbital Forcing on Titan's Dune Orientations," at the Lunar and Planetary Science Conference in Houston in March.

Long before McDonald studied the wrong-way dune images from Cassini, scientists Ryan Ewing, assistant professor of earth science at Texas A&M, and Alex Hayes, Cornell assistant professor of astronomy, collaborated and theorized that the dunes were shaped by winds that change because of orbital forcing. Ewing and Hayes mentored McDonald in his research.

McDonald analyzed Cassini radar images, which use microwaves instead of light. The radar imager pierces the murky moon's atmosphere, unveiling its strikingly familiar geologic surface features.

Titan's geologic features possess down-to-Earth familiarity. The moon's thick atmosphere is in a perpetual state of organic smog, while wind and methane rain carve dunes, rivers, lakes and seas into its cold surface. NASA scientists believe Titan can provide insight into the processes that drive Earth's climate and surface.

Like a tethered child, Titan accompanies Saturn in orbit. The ringed planet's own 29.5-year orbit around the sun is slightly eccentric, as summer in Titan's southern hemisphere occurs when Saturn (and Titan) are closest to the sun. This makes southern summer warmer and faster, when compared to northern ones.

Like Earth, these orbital conditions change with time. Thirty-five thousand years ago, for example, Titan's northern summers were hotter. These variations – called Croll-Milankovitch cycles on this planet – drive Earth's ice ages.

McDonald completed an exhaustive analysis using climate models from additional collaborators to examine dune orientation for the past 45,000 years. On Earth, giant dunes can takes thousands of years to reorient to changing wind conditions. The slow wind speeds on Titan suggest that timescales for its dunes are even longer.

"This has brought us to the point of believing that these long-term orbital changes could indeed be affecting the dunes," he said.

This fall, McDonald will pursue his doctoral degree in planetary science at the Georgia Institute of Technology.

Explore further: Cassini captures familiar forms on Titan's dunes

add to favorites email to friend print save as pdf

Related Stories

Cassini captures familiar forms on Titan's dunes

Apr 08, 2014

(Phys.org) —The moons of our Solar System are brimming with unusual landscapes. However, sometimes they look a little more familiar, as in this new radar image from the Cassini orbiter. The image shows ...

Cassini Maps Global Pattern of Titan's Dunes

Feb 27, 2009

(PhysOrg.com) -- Titan's vast dune fields, which may act like weather vanes to determine general wind direction on Saturn's biggest moon, have been mapped by scientists who compiled four years of radar data ...

Cassini sees the two faces of Titan's Dunes

Jan 24, 2012

(PhysOrg.com) -- A new analysis of radar data from NASA's Cassini mission, in partnership with the European Space Agency and the Italian Space Agency, has revealed regional variations among sand dunes on Saturn's ...

Mystery of the missing waves on Titan

Jul 23, 2013

One of the most shocking discoveries of the past 10 years is how much the landscape of Saturn's moon Titan resembles Earth. Like our own blue planet, the surface of Titan is dotted with lakes and seas; it ...

New research points to erosional origin of linear dunes

Feb 24, 2012

Linear dunes, widespread on Earth and Saturn's moon, Titan, are generally considered to have been formed by deposits of windblown sand. It has been speculated for some time that some linear dunes may have ...

Recommended for you

SDO captures images of two mid-level flares

1 hour ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

8 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

11 hours ago

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

11 hours ago

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

12 hours ago

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.