Nuclear transfer to reprogram adult patient cells into stem cells demonstrated

May 5, 2014

The capacity to reprogram adult patient cells into pluripotent, embryonic-like, stem cells by nuclear transfer has been reported as a breakthrough by scientists from the US and the Hebrew University of Jerusalem.

The work, described in the journal Nature, was accomplished by researchers from the New York Stem Cell Foundation Research Institute and Columbia University and by Nissim Benvenisty, the Herbert Cohn professor of Cancer Research and director of the Stem Cell Unit at the Institute of Life Sciences at the Hebrew University of Jerusalem, and his graduate student Ido Sagi. The latter assisted in the characterization of the pluripotent nature of these cells.

Pluripotency means the ability of to develop into all the cells of our body, including those in the brain, heart, liver and blood. In 2012, the Nobel Prize in Physiology or Medicine was awarded for two discoveries showing that mature (differentiated) cells can be converted into pluripotent, embryonic-like cells, either by forced expression of genetic factors or by transfer of cell nuclei into female eggs, in a process called "reprogramming."

However, the actual ability to reprogram cells from humans by had only been accomplished until now by using for this purpose, until this latest work involving reprogramming of adult patient cells demonstrated by the researchers from the US and the Hebrew University, as described in the new Nature article.

Future research should allow further characterization of these novel, pluripotent cell types and their comparison to other stem cells. "Human generated from may change the face of medicine," says Prof. Benvenisty, leading to totally new, personalized genetic therapy involving the reprograming of a patient's own cells to achieve cell replacement and healing.

Explore further: Critical factor (BRG1) identified for maintaining stem cell pluripotency

More information: "Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells." Mitsutoshi Yamada, et al. Nature (2014) DOI: 10.1038/nature13287. Received 04 February 2014 Accepted 27 March 2014 Published online 28 April 2014

Related Stories

Embryonic stem cells: Reprogramming in early embryos

March 26, 2014

An Oregon Health & Science University scientist has been able to make embryonic stem cells from adult mouse body cells using the cytoplasm of two-cell embryos that were in the "interphase" stage of the cell cycle. Scientists ...

Recommended for you

A village of bacteria to help frogs fight disease

October 7, 2015

The naturally occurring bacteria on a frog's skin could be the most important tool for helping the animal fight off a deadly skin disease, according to an experiment conducted by Virginia Tech researchers.

Research reveals new clues about how humans become tool users

October 7, 2015

New research from the University of Georgia department of psychology gives researchers a unique glimpse at how humans develop an ability to use tools in childhood while nonhuman primates—such as capuchin monkeys and chimpanzees—remain ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.