Nuclear transfer to reprogram adult patient cells into stem cells demonstrated

May 05, 2014

The capacity to reprogram adult patient cells into pluripotent, embryonic-like, stem cells by nuclear transfer has been reported as a breakthrough by scientists from the US and the Hebrew University of Jerusalem.

The work, described in the journal Nature, was accomplished by researchers from the New York Stem Cell Foundation Research Institute and Columbia University and by Nissim Benvenisty, the Herbert Cohn professor of Cancer Research and director of the Stem Cell Unit at the Institute of Life Sciences at the Hebrew University of Jerusalem, and his graduate student Ido Sagi. The latter assisted in the characterization of the pluripotent nature of these cells.

Pluripotency means the ability of to develop into all the cells of our body, including those in the brain, heart, liver and blood. In 2012, the Nobel Prize in Physiology or Medicine was awarded for two discoveries showing that mature (differentiated) cells can be converted into pluripotent, embryonic-like cells, either by forced expression of genetic factors or by transfer of cell nuclei into female eggs, in a process called "reprogramming."

However, the actual ability to reprogram cells from humans by had only been accomplished until now by using for this purpose, until this latest work involving reprogramming of adult patient cells demonstrated by the researchers from the US and the Hebrew University, as described in the new Nature article.

Future research should allow further characterization of these novel, pluripotent cell types and their comparison to other stem cells. "Human generated from may change the face of medicine," says Prof. Benvenisty, leading to totally new, personalized genetic therapy involving the reprograming of a patient's own cells to achieve cell replacement and healing.

Explore further: Soft substrates may promote the production of induced pluripotent stem cells

More information: "Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells." Mitsutoshi Yamada, et al. Nature (2014) DOI: 10.1038/nature13287. Received 04 February 2014 Accepted 27 March 2014 Published online 28 April 2014

add to favorites email to friend print save as pdf

Related Stories

Embryonic stem cells: Reprogramming in early embryos

Mar 26, 2014

An Oregon Health & Science University scientist has been able to make embryonic stem cells from adult mouse body cells using the cytoplasm of two-cell embryos that were in the "interphase" stage of the cell ...

Recommended for you

In a role reversal, RNAs proofread themselves

6 hours ago

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Growing functioning brain tissue in 3D

9 hours ago

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Understanding cellular ageing

9 hours ago

Researchers at the BBSRC-supported Babraham Institute have mapped the physical structure of the nuclear landscape in unprecedented detail to understand changes in genomic interactions occurring in cell senescence and ageing. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.