Novel NIST laser system mimics sunlight to test solar cell efficiency

May 29, 2014 by Laura Ost
NIST engineer Tasshi Dennis with NIST's solar simulator based on a white light laser. The instrument simulates sunlight to help measure the properties of solar cell materials. The instrument's beam is illuminating a gallium arsenide solar cell (yellow diamond) in the lower left corner of the photo. Credit: J. Burrus/NIST

(Phys.org) —Researchers at the National Institute of Standards and Technology (NIST) have developed a laser-based instrument that generates artificial sunlight to help test solar cell properties and find ways to boost their efficiency.

The novel NIST system simulates sunlight well across a broad spectrum of visible to infrared light. More flexible than conventional solar simulators such as xenon arc-lamps or light-emitting diodes, the laser instrument can be focused down to a small beam spot—with resolution approaching the theoretical limit—and shaped to match any desired spectral profile.

The new simulator is based on a white light laser that uses optical-fiber amplifier technology to boost the power and a photonic crystal fiber to broaden the spectrum. NIST researchers used the simulator to measure the efficiency of thin-film made of gallium-arsenide, crystalline silicon, amorphous silicon and copper-indium-gallium-selenide, and the results agreed with independent measurements.*

"We can focus the light down to a spot less than 2 micrometers in diameter, despite the wide spectral content. You can't do this with sunlight," NIST researcher Tasshi Dennis says. "We then used this focused spot to scan across solar cell materials while monitoring the current the light generated. This allowed us to create spatial maps (images) of the response of a solar cell at the micrometer level.

"The new instrument may help researchers understand solar cells' optical and electrical characteristics, including defects and the impact of unusual designs. In particular, the new simulator's capability to make rapid, accurate spectrum adjustments will help characterize the most efficient solar cells, which use multi-junction materials in which each junction is tuned to a different part of the spectrum. The instrument is designed to probe small research samples, individual concentrator solar cells and microstructures, not to determine the efficiencies of large solar cell panels and modules. NIST researchers have been working to make the new simulator programmable and portable for use outside NIST.

Explore further: Researchers achieve higher solar-cell efficiency with zinc-oxide coating

More information: T. Dennis, J.B. Schlager and K.A. Bertness. "A novel solar simulator based on a super-continuum laser for solar cell device and materials characterization." IEEE Journal of Photovoltaics. Posted online May 26. DOI: 10.1109/JPHOTOV.2014.2321659.

add to favorites email to friend print save as pdf

Related Stories

Simulating the sun for photovoltaic research

Aug 31, 2012

PML researchers have devised a novel source of portable sunlight that may fill an urgent need in renewable energy research – namely, light sources that generate a near-perfect solar spectrum to be used ...

Recommended for you

Image: Testing electric propulsion

19 hours ago

On Aug. 19, National Aviation Day, a lot of people are reflecting on how far aviation has come in the last century. Could this be the future – a plane with many electric motors that can hover like a helicopter ...

Where's the real value in Tesla's patent pledge?

20 hours ago

With the much-anticipated arrival next month of electric vehicle manufacturer Tesla's Model S to Australian shores, it's a good time to revisit Tesla's pledge to freely share patents. ...

New type of solar concentrator doesn't block the view

Aug 19, 2014

(Phys.org) —A team of researchers at Michigan State University has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through ...

Asian inventions dominate energy storage systems

Aug 19, 2014

In recent years, the number of patent applications for electrochemical energy storage technologies has soared. According to a study by the Technical University Munich, the largest volume of applications is ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

peter_trypsteen
not rated yet May 31, 2014
Or you could just use a LEP lamp:
http://en.wikiped...sma_lamp