NCNR neutrons highlight possible battery candidate

May 21, 2014 by Chad Boutin
At top of this image a, sodium fills in layers of the crystal, represented by one bright yellow dot followed by three darker ones; at bottom, the layers? magnetic ordering is shown as green and purple dots representing magnesium at two different charge states, with the green-in-purple dots representing a mixture of the two charge states. Artwork generated from a scanning tunneling microscope image.

Analysis of a manganese-based crystal by scientists at the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) has produced the first clear picture of its molecular structure. The findings could help explain the magnetic and electronic behavior of the whole family of crystals, many of which have potential for use in batteries.

The family of crystals it belongs to has no formal name, but it has three branches, each of which is built around manganese, cobalt or iron—transition metals that can have different magnetic and charge properties. But regardless of family branch, its members share a common characteristic: They all store chemical energy in the form of sodium, atoms of which can easily flow into and out of the layers of the crystal when electric current is applied, a talent potentially useful in rechargeable batteries.

Other members of this family can do a lot of things in addition to energy storage that interest manufacturers: Some are low-temperature superconductors, while others can convert heat into electricity. The trouble is that all of them are, on the molecular level, messy. Their structures are so convoluted that scientists can't easily figure out why they do what they do, making it hard for a manufacturer to improve their performance.

Fortunately, this particular manganese crystal is an exception. "It's the one stable compound we know of in the manganese branch that has a perfect ," says Jeff Lynn of the NIST Center for Neutron Research (NCNR). "That perfection means we can isolate all its internal electronic and magnetic interactions and see them clearly. So now, we can start exploring how to make those more movable."

Team members from MIT made the material and performed analysis using state-of-the-art lab techniques such as electron microscopy, but they needed help from the NCNR's neutron beams to tease out the interactions between its individual atoms. The effort showed that the crystal was unusual for reasons beyond its structural perfection. Its layers absorb sodium in a fashion rarely seen in nature: In each layer, one "stripe" of atoms fills up completely with sodium, then the next three stripes fill up only halfway before another full stripe appears. Lynn says the pattern is caused by different charges and magnetic moments that possess in different parts of the crystal, a feature revealed by analysis of the NCNR data.

"This particular crystal is probably not the one you'd use in a battery or some other application, it just permits us to understand what's happening with its internal structure and magnetism for the first time," Lynn says. "Now we have a basis for tailoring the properties of these materials by changing up the and changing the . We no longer have to hunt around in the dark and hope."

Explore further: Team visualizes complex electronic state

More information: X. Li, X. Ma, D. Su, L. Liu, R. Chisnell, S.P. Ong, H. Chen, A. Toumar, J-C. Idrobo, Y. Lei, J. Bai, F. Wang, J.W. Lynn, Y.S. Lee and G. Ceder. "Direct Visualization of the Jahn-Teller Effect Coupled to Na Ordering in Na5/8MnO2." Nature Materials, DOI: 10.1038/nmat3964, May 18, 2014.

Related Stories

Team visualizes complex electronic state

May 19, 2014

A material called sodium manganese dioxide has shown promise for use in electrodes in rechargeable batteries. Now a team of researchers has produced the first detailed visualization—down to the level of ...

Organic crystal demonstrates superelasticity

May 07, 2014

(Phys.org) —Not only rubber is elastic: There is also another, completely different form of elasticity known as superelasticity. This phenomenon results from a change in crystal structure and was previously ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.