Nanostructures to facilitate the process to eliminate organic contaminants in water

May 12, 2014
Nanostructures to facilitate the process to eliminate organic contaminants in water
Dissolution process of organic particles through nanoparticles

A researcher at the Public University of Navarre (UPNA) has developed nanostructures that assist in water decontamination. The nanostructures are coated in titanium oxide to which nitrogen has been added. This allows sunlight, rather than ultraviolet radiation, to trigger the process involving the chemical reaction and destruction of contaminants.

In her PhD thesis, Silvia Larumbe-Abuin describes these nanostructures. What is more, thanks to the magnetic nucleus of the particles, once the process has been carried out, they can be retrieved and reused. Silvia Larumbe's thesis is entitled, "Síntesis, caracterización y aplicaciones de nanoestructuras basadas en óxidos de metales de transición" [Synthesis, characterisation and applications of nanostructures based on transition metal oxides].

The basis of the research conducted is the phenomenon known as photocatalysis: When light affects a substance that acts as a catalyst, the speed of the chemical reaction is increased. In this case, the light activates the and different oxidizing radicals are formed; the latter destroy the in the water, which could be colouring agents, solvents, detergents, etc. As the author of the work explained, "it is a sustainable system that could be used as an alternative to different treatments used traditionally in waste water treatment and, specifically, to eliminate certain organic contaminants".

One of the advantages of this development is the possibility of using sunlight instead of ultraviolet light. "Since nitrogen is added to the coating of the particles, the mechanism that will trigger the process can be sunlight rather than , which means a more accessible, less expensive alternative that poses fewer risks."

The fact that structures of a nanometric size are used also improves photocatalytic capability since the surface of the photocatalyst is greater. Another advantage is the reuse of the catalysing component; since the are formed using a magnetic nucleus, they can be retrieved by applying an external magnetic field.

Explore further: Good cats wear black: Black nanoparticles could play key role in clean energy photocatalysis

More information: C. Gómez-Polo, S. Larumbe, J.M. Pastor. (2013). "Room temperature ferromagnetism in non magnetic doped TiO2 nanoparticles." Journal of Applied Physics 113 17B511

Related Stories

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.