New method discovered to protect against chemical weapons

May 27, 2014
Compounds have been discovered that offer a new way to detoxify chemical weapons such as sarin gas. Credit: Graphic courtesy of Oregon State University

Researchers at Oregon State University have discovered that some compounds called polyoxoniobates can degrade and decontaminate nerve agents such as the deadly sarin gas, and have other characteristics that may make them ideal for protective suits, masks or other clothing.

The use of polyoxoniobates for this purpose had never before been demonstrated, scientists said, and the discovery could have important implications for both military and civilian protection. A United Nations report last year concluded that sarin gas was used in the conflict in Syria.

The study findings were just published in the European Journal of Inorganic Chemistry.

Some other exist that can decontaminate nerve gases, researchers said, but they are organic, unstable, degraded by sunlight and have other characteristics that make them undesirable for – or they are inorganic, but cannot be used on fabrics or surfaces.

By contrast, the polyoxoniobates are inorganic, do not degrade in normal environmental conditions, dissolve easily and it should be able to incorporate them onto surfaces, fabrics and other material.

"This is a fundamental new understanding of what these compounds can do," said May Nyman, an associate professor of chemistry in the OSU College of Science. "As stable, they have an important potential to decontaminate and protect against these deadly nerve gases."

As a chemical group, polyoxoniobates have been known of since the mid-1900s, Nyman said, but a detailed investigation of their complex chemistry has revealed this new potential. Besides protection against nerve gas, she said, their chemistry might allow them to function as a catalyst that could absorb carbon dioxide and find use in carbon sequestration at fossil-fuel power plants – but little has been done yet to explore that potential.

A new method to protect against could be significant. These organofluorophosphate compounds can be inhaled or absorbed through the skin, and in military use are considered weapons of mass destruction. They can be lethal even at very small levels of exposure.

"In continued work we hope to incorporate the protective compounds onto surfaces or fabrics and explore their function," Nyman said. "They could form the basis for an improved type of gas mask or other protection. We would also need to test the material's ability to withstand very arid environments, extreme heat or other conditions."

A goal will be materials that are durable, high performing and retain a high level of protection against nerve agents such as sarin and soman gas even in harsh environmental conditions, researchers said.

The OSU research demonstrated the ability of polyoxoniobates to neutralize both actual and simulated nerve agents. Testing against actual nerve agents was done at the Edgewood Chemical Biological Center, a U.S. Army facility designed for that purpose.

Explore further: Nanotube-infused clothing may protect against chemical weapons

More information: Study paper: ir.library.oregonstate.edu/xmlui/handle/1957/48156

add to favorites email to friend print save as pdf

Related Stories

Defending against chemical acts of terrorism

Apr 19, 2012

Researchers may have found a way to protect us against otherwise deadly chemical attacks, such as the subway sarin incident in Tokyo that left thirteen people dead and thousands more injured or with temporary vision problems. ...

Recommended for you

Triplet threat from the sun

3 hours ago

The most obvious effects of too much sun exposure are cosmetic, like wrinkled and rough skin. Some damage, however, goes deeper—ultraviolet light can damage DNA and cause proteins in the body to break down ...

Towards controlled dislocations

Oct 20, 2014

Crystallographic defects or irregularities (known as dislocations) are often found within crystalline materials. Two main types of dislocation exist: edge and screw type. However, dislocations found in real ...

Chemists tackle battery overcharge problem

Oct 17, 2014

Research from the University of Kentucky Department of Chemistry will help batteries resist overcharging, improving the safety of electronics from cell phones to airplanes.

Surface properties command attention

Oct 17, 2014

Whether working on preventing corrosion for undersea oil fields and nuclear power plants, or for producing electricity from fuel cells or oxygen from electrolyzers for travel to Mars, associate professor ...

User comments : 0