Membrane proteins: Communicating with the world across the border

May 15, 2014

All living cells are held together by membranes, which provide a barrier to the transport of nutrients. They are also the communication platform connecting the outside world to the cell's interior control centers. Thousands of proteins reside in these cell membranes and control the flow of select chemicals, which move across the barrier and mediate the flux of nutrients and information. Almost all of these pathways work by protein handshakes—one protein "talking" to another in order to, for example, encourage the import of a needed nutrient, to block a compound from accumulating to a toxic level, or to alert the cell's interior to changes in the outside environment.

Little was known about the relationships among and interior proteins. A team led by Carnegie's Wolf Frommer has revealed how membrane proteins were networked with each other and with the inside the cell. Their work is published in Science.

The messages conveyed to membrane proteins by signaling proteins, and vice versa, form the basis of communication between cells within an organism, as well as between the organism and the outside world. To gain insight into this protein-protein messaging across and within membranes, the Frommer team carried out a massive screen for protein-protein interactions between predicted membrane proteins and predicted signaling proteins. They focused on a mustard green called Arabidopsis, the reference organism used by plant biologists in their research.

Many millions of tests were performed and over 10,000 interactions were discovered. The work is the first of its kind in any organism and will have implications for both plant and animal sciences.

Technical difficulties in studying membranes mean that only a few cross-membrane protein-to-protein signals are known. Both plant and human genomes contain thousands of membrane proteins whose functions remain mysterious. Similar techniques to identify membrane protein interactions have been used before to identify select membrane transporters. But Frommer's team developed a deeper process that was able to yield a greater diversity of results. The vast majority of the thousands of potential membrane protein-signaling protein interactions they found had never before been identified. The team's aim was to use their new protein interaction network to identify interactions important for protein-protein messaging and help assign possible functions to these "unknown" membrane proteins.

"Our findings can serve as an important resource for gene discovery and will be applicable to the animal kingdom, as well as to plants," Frommer said. "In plants, it could help lead to discoveries that will improve crop yields."

Explore further: Membrane protein kit may lead to better targeted drugs

More information: "Border Control—A Membrane-Linked Interactome of Arabidopsis" Science, 2014.

Related Stories

Protein structure: Peering into the transit pore

February 7, 2014

The lipid-rich membranes of cells are largely impermeable to proteins, but evolution has provided a way through – in the form of transmembrane tunnels. A new study shows in unmatched detail what happens as proteins pass ...

Plants recycle too

February 13, 2014

A research team from VIB and Ghent University (Belgium), and Staffan Persson from the Max Planck Institute of Molecular Plant Physiology in Potsdam (Germany) has now identified a new protein complex which is crucial for endocytosis ...

Molecular biology mystery unravelled

February 18, 2014

The nature of the machinery responsible for the entry of proteins into cell membranes has been unravelled by scientists, who hope the breakthrough could ultimately be exploited for the design of new anti-bacterial drugs. ...

Recommended for you

Orangutan females prefer dominant, cheek-padded males

September 1, 2015

Unlike most mammals, mature male orangutans exhibit different facial characteristics: some develop large "cheek pads" on their faces; other males do not. A team of researchers studied the difference in reproductive success ...

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.