Mars tech electrifies Earth

May 21, 2014 by Bob Silberg
Northern Power wind turbines pepper the landscape in Bisaccia, Italy.

Some of the wind turbines generating electricity on Earth today grew out of technology developed in the 1990s for settlements on Mars.

Back then at NASA's Ames Research Center, senior research scientist David Bubenheim and his colleagues worked on designing a complete ecological system to sustain astronauts on Mars. To generate electricity for the future Martians, they developed a hybrid concept combining two renewable sources: wind and sun.

Needing a suitable place to develop and test the wind-power technology, the Ames team turned to a remote, harsh environment here on Earth. "The South Pole was a really good analog for Mars," Bubenheim said. "The technology features for establishing a human habitat on Mars are very similar to the features needed to make something work at the South Pole."

Around the same time, the National Science Foundation (NSF) was working on a revamp of its South Pole station. "Using could be a way of reducing the amount of fuel they have to fly in," Bubenheim said. So Ames partnered with NSF and the Department of Energy. "NASA took the leadership on the team because we had the longest-term technology, a Mars turbine," Bubenheim said. "But all of the main participants made major contributions. It was a great example of how government is supposed to work."

Going to extremes

Years before, NSF had worked with a company called Northern Power Systems (NPS), based in Barre, Vermont, to deploy 3-kilowatt on Black Island off the coast of Antarctica. In 1993, Ames awarded NPS a contract to construct a thoroughly redesigned wind turbine at the South Pole, incorporating features the Ames team had developed for Mars.

Mars.

"The main item was a direct-drive turbine," Bubenheim said. "We eliminated a whole lot of mechanical systems" that were prone to freezing up at very cold temperatures. "And then there were materials, lubricants and power-control systems—features that we were putting in for five-year unattended, no-maintenance kinds of operations."

NPS installed a 3-kilowatt turbine at the South Pole in 1997, and then began developing a 100-kilowatt turbine for the same extreme conditions. The first prototypes of the larger turbine were successfully deployed in two places: Kotzebue, Alaska, and Golden, Colorado.

"Turbines traditionally have had a hard time being employed in Alaska because they would typically freeze and not work in the winter," Bubenheim said. "Nobody wanted to climb up on the wind turbine and work on it at 40 below zero in the dark."

Jonathan Lynch, at NPS, said the new turbines enabled access to the parts from inside the tower and used metals, insulation, and fiberglass that can withstand over long periods of time. The technology won an R&D 100 award from R&D Magazine in 2000 and The American Wind Energy Association Technology Award in 2006.

Simple, elegant

Today, the NASA-derived NPS turbine is known as the Northern Power 100. It begins generating power with winds as low as 6 mph, and each turbine produces enough energy for 25 to 30 homes. "We designed a simple and elegant machine with as few moving parts as possible, to both minimize and simplify maintenance needs," Lynch said.

NPS adjusted the turbine's features to suit milder climates as well. More than 200 Northern Power 100s are currently operating. They have accumulated 2.5 million run hours, representing a reduction in carbon emissions of 50,000 tons annually.

Lynch says the largest markets for the Northern Power 100 and its newer Northern Power 60 are currently in the United Kingdom and Italy, and that the Caribbean and Alaska are also showing a demand. "They are finding their niches in places where a smaller high-performance turbine can integrate into small electrical grids," Bubenheim said.

While the has not yet made its way to Mars, Bubenheim said the partnership between NPS and other government entities has produced data and knowledge that NASA is building on for future Mars missions. And thanks to more recent NASA missions generating new information about the surface of Mars, Bubenheim said, "now we have much better data and we can map the wind resources better than ever before. This way, we can get a very good idea as to how useful and applicable the wind technology will be."

In the meantime, a technology built for Mars continues to support the demand for clean energy here on Earth.

Explore further: A new algorithm improves the efficiency of small wind turbines

add to favorites email to friend print save as pdf

Related Stories

Wind energy: On the grid, off the checkerboard

Apr 01, 2014

As wind farms grow in importance across the globe as sources of clean, renewable energy, one key consideration in their construction is their physical design—spacing and orienting individual turbines to ...

Using fluctuating wind power

Mar 25, 2013

Incorporating wind power into existing power grids is challenging because fluctuating wind speed and direction means turbines generate power inconsistently. Coupled with customers' varying power demand, many ...

Vestas Announces New 7 megawatt offshore wind turbine

Apr 01, 2011

(PhysOrg.com) -- Vestas Chief Executive Officer Ditlev Engel announced in London their new V164 wind turbine, designed specifically for offshore wind power. Optimized for conditions in the North Sea, Vestas ...

Shifting winds in turbine arrays

Oct 22, 2013

Researchers modeling how changes in air flow patterns affect wind turbines' output power have found that the wind can supply energy from an unexpected direction: below.

Recommended for you

Are electric cars greener? Depends on where you live

14 hours ago

Long thought a thing of the future, electric cars are becoming mainstream. Sales in the United States of plug-in, electric vehicles nearly doubled last year. Credible forecasts see the number rising within ...

Building a better battery

16 hours ago

Imagine an electric car with the range of a Tesla Model S - 265 miles - but at one-fifth the $70,000 price of the luxury sedan. Or a battery able to provide many times more energy than today's technology ...

Researchers find way to turn sawdust into gasoline

20 hours ago

Researchers at KU Leuven's Centre for Surface Chemistry and Catalysis have successfully converted sawdust into building blocks for gasoline. Using a new chemical process, they were able to convert the cellulose ...

Nanodot team aims to charge phones in less than a minute

Nov 25, 2014

The world of smartphone users, which is a very large base indeed, is ripe for better battery solutions and an Israel-based company has an attractive solution in store, in the form of nanodot batteries that ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

alfie_null
not rated yet May 22, 2014
They claim the South Pole is the best analog of a Martian environment we've found on Earth. What's lacking? What about dust? The properties of that dust? Seems like that ought to be an important consideration for anything with moving parts. More wind means more dust - yes?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.