Lizard species found to reduce head bobbing mating ritual when predators are around

May 20, 2014 by Bob Yirka report
Male anolis sagrei expanding its throat. Credit: Frédéric Trudeau/Wikipedia.

(Phys.org) —A team made up of researchers from several universities in the U.S. has found that male brown anoles (Anolis sagrei)—a type of lizard, dramatically reduced its head bobbing mating dance when predators were introduced. In their paper published in Proceedings of the National Academy of Sciences, the researchers describe their field study of the lizards and how it resulted in the discovery that an animal was able to change its mating behavior so quickly.

Male brown anoles, like many other (and other species) engage in a dance of sorts when attempting to attract a mate. It bobs its head in exaggerated movements, puffs up its bright orange dewlap and even does some pushups. In addition to attracting a mate, the dance is believed to also serve as a warning to rivals to stay away. In this new effort, the researchers found that if came into the area, the males immediately toned down their moves, hoping apparently, to remain unseen, while attempting to entice a mate.

To find out more about the lizard's patterns the team of researchers ventured down to its home in the Bahamas and set about measuring the amount of movement involved in head bobbing with several specimens on several of the islands. Once that was completed, they introduced carnivorous curly-tailed lizards, (Leiocephalus carinatus) onto the islands, which are known to catch and eat brown anoles. After waiting for a period of time to allow the new arrangements to settle, the researchers once again measured the distance the heads of several specimens traveled as they engaged in their head bobbing dance, and found that the distance had decreased dramatically (up to 40 percent). They also noted that the lizards appeared to be more timid as they bobbed, doing so with far less enthusiasm.

The researchers surmise that the reduction in head bobbing was due to a desire to be less noticeable to the newly arrived predators that may be in the area. How the females responded to the feeble mating gestures has yet to be determined, though it's likely they too would prefer to not attract the attention of predators when mating as well.

The researchers note that many cases of animals changing their mating rituals have been observed over the course of several generations in response to predators, but a single species changing its mating habits in its own lifetime has not been seen before.

Explore further: Insect mating behavior has lessons for drones

More information: Predation-associated modulation of movement-based signals by a Bahamian lizard, David S. Steinberg, PNAS, DOI: 10.1073/pnas.1407190111

Abstract
Signaling individuals must effectively capture and hold the attention of intended conspecific receivers while limiting eavesdropping by potential predators. A possible mechanism for achieving this balance is for individuals to modulate the physical properties of their signals or to alter the proportion of time spent signaling, depending upon local levels of predation pressure. We test the hypothesis that prey can alter their visual signaling behavior to decrease conspicuousness and potentially limit predation risk via modulation of signal properties or display rate. To do so, we conducted a manipulative experiment in nature to evaluate the possible effect of predation pressure on the physical properties of movement-based signals and on the proportion of time spent signaling by using a well-understood predator–prey system in the Bahamas, the semiarboreal lizard Anolis sagrei, and one of its main predators, the curly-tailed lizard Leiocephalus carinatus. We find that on islands onto which the predator was introduced, male anoles reduce the maximum amplitude of head-bob displays but not the proportion of time spent signaling, in comparison with control islands lacking the predator. This reduction of amplitude also decreases signal active space, which might alter the reproductive success of signaling individuals. We suggest that future studies of predator–prey interactions consider the risk effects generated by changes in signals or signaling behavior to fully determine the influence of predation pressure on the dynamics of prey populations.

Related Stories

New horned lizard species found in southern Mexico

May 15, 2014

An article published in the current issue of the journal Herpetologica describes a new horned lizard species that lives in Mexico. Body size, tail length, and scale texture and layout distinguish this new species, which ...

Recommended for you

Insect mating behavior has lessons for drones

15 hours ago

Male moths locate females by navigating along the latter's pheromone (odor) plume, often flying hundreds of meters to do so. Two strategies are involved to accomplish this: males must find the outer envelope ...

Godwits are flexible... when they get the chance

May 29, 2015

Black-tailed godwits are able to cope with unpredictable weather. This was revealed by a thorough analysis of the extraordinary spring of 2013 by ecologist Nathan Senner of the University of Groningen and ...

Do you have the time? Flies sure do

May 28, 2015

Flies might be smarter than you think. According to research reported in the Cell Press journal Current Biology on May 28, fruit flies know what time of day it is. What's more, the insects can learn to con ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.