Light-sensitive 'eyes' in plants

May 5, 2014
Light-sensitive 'eyes' in plants
Credit: University of Gothenburg

Most plants try to turn towards the sun. Scientists from the University of Gothenburg have worked with Finnish colleagues to understand how light-sensitive proteins in plant cells change when they discover light. The results have been published in the most recent issue of Nature.

The family of proteins involved is known as the "phytochrome" family, and these proteins are found in all plant leaves. These proteins detect the presence of and inform the cell whether it is day or night, or whether the plant is in the shade or the sun.

"You can think of them as the plant's 'eyes'. Our study has shown how these eyes work at the molecular level," explains Sebastian Westenhoff at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Molecules change in the light

Most plants try to avoid the shade and grow towards the light, which enables them, among other things, to consume more through photosynthesis. Proteins known as "phytochromes" control this process. The phytochromes in the plants are thus changed through the light radiation, and signals are passed onwards to the cells.

Phytochromes have, as do most other proteins, a three-dimensional molecular structure. Light is absorbed by the phytochromes and the structure of the changes.

The scientists have studied this structural change in phytochromes from bacteria, since it is possible to obtain sufficient material to work on from bacteria.

"We already knew that some form of structural change was taking place, since the light signals must be transferred onwards to the cell. What we didn't know, however, was how the structure changed, and this is what we have revealed. Nearly the complete molecule is rebuilt," says Sebastian Westenhoff.

More efficient crops

The discovery increases our understanding of how phytochromes work. This may, in turn, lead to new strategies in the development of more efficient crops, which may be able to grow where there is little light.

"Proteins are the factories and machines of life, and their structures change when they carry out their specific tasks. At the moment, it's usually not possible to determine these changes. But I believe that we can use similar experiments to determine many important structural changes in phytochromes and other proteins," says Sebastian Westenhoff.

New measurement method

A new measurement method that Sebastian Westenhoff has developed has made the study possible. This method is based on using laser light to initiate the structural change. X-rays are then used to image the structural change.

The project has its origin in an approach made by scientist Janne Ihalainen from the University of Jyväslkyla two years ago.

"He asked whether we could use my method on phytochromes, which he had recently started working on."

Explore further: Stunting plants' skyward reach could lead to improved yields

More information: Paper:

Related Stories

New technology could help food crops thrive in crowded fields

November 20, 2013

( —With the global population expected to reach 9 billion by 2050, the world's farmers are going to need to produce a lot more food—but without using much more farmland, as the vast majority of the world's arable ...

Algae 'see' a wide range of light

May 1, 2014

( —Aquatic algae can sense an unexpectedly wide range of color, allowing them to sense and adapt to changing light conditions in lakes and oceans. The study by researchers at UC Davis was published earlier this ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.