Life on cheese: Scientists explore the cheese rind microbiome

May 09, 2014
Scientists collect cheese rind samples with a sharp knife. Credit: Elisa Schornsteiner / Vetmeduni Vienna

Bacteria and moulds are vital to the ripening and aroma of many cheeses. Scientists from the Institute for Milk Hygiene, Milk Technology and Food Science at the University of Veterinary Medicine, Vienna are working to identify the microorganisms that live on the rind of Vorarlberger Bergkäse, an Austrian alpine cheese. Researchers found differences between young and aged cheeses, but also in samples from different cheese cellars. Environment and production techniques also influence cheese flora. The research results were published in the International Journal of Food Microbiology.

The rind is the boundary layer between a and its environment. It hosts a variety of that comprise the microbiome: a symbiotic community whose members perform different tasks. Some break down proteins and fats on the rind, for example, creating volatile sulphur and ammonia compounds that are responsible for the intensive odour of some types of cheese.

There are different curing methods for cheese. Some, like Limburger, Tilsiter and Appenzeller, need specific bacteria on their rinds. Others, like Camembert and Brie, develop their aroma with the assistance of moulds.

Vorarlberger Bergkäse - a model cheese

Vorarlberger Bergkäse is a regional speciality. Tons are produced every year, and similar varieties are made in the Tirol Alps and the Bavarian region of Allgäu. "In France, research into the microorganisms found on cheese is very advanced. Yet until now, the microbiome on Vorarlberger Bergkäse and other similar cheeses had hardly been investigated at all", explains study director Stephan Schmitz-Esser.

Collecting cheese in the name of science

Microbiologist Schmitz-Esser and lead author Elisa Schornsteiner worked with colleagues from the Agricultural Chamber of Vorarlberg to gather samples from three different Vorarlberger cheese dairies. Schornsteiner collected 25 to 30 rind samples from cheese wheels at different curing stages from very young to well-aged. Then the scientists ran detailed genetic analyses on the rinds to identify the strains of bacteria and yeast living on them.

"Marine bacteria" with an unknown role discovered on rind

For the first time, these have revealed the entire spectrum of microorganisms that inhabit Vorarlberger Bergkäse. One find interested experts in particular: The Halomonas bacteria, a halophillic microbe probably originating from the sea, was the most common microorganism on the cheese and especially prevalent on young cheese rinds. Since the salt concentration on a cheese rind drops during the ripening process, researchers found older rinds hosted correspondingly fewer Halomonas. The exact role the microorganism plays in the cheese-making process is currently unknown and will be the subject of additional studies. The importance of the yeasts found on the cheese rinds is also still unclear and requires further investigation.

The microbiome's role in cheese making

Microorganisms on cheese not only preserve the final product and make it aromatic and delicious; they are also very important for food safety. Many of the bacteria on the rind prevent the spread of potentially dangerous pathogens by excreting inhibitors against other , such as listeria.

"Understanding exactly which microorganisms are on the rinds and the role each plays in the complex community is the subject of our research", explains Schmitz-Esser. "This will allow us to help cheese dairies make safe, tasty cheeses".

Explore further: One dead, babies ill from listeria linked to cheese

More information: The article "Cultivation-independent analysis of microbial communities on Austrian raw milk hard cheese rinds" by Elisa Schornsteiner, Evelyne Mann, Othmar Bereuter, Martin Wagner and Stephan Schmitz-Esser was published in the International Journal of Food Microbiology. dx.doi.org/10.1016/j.ijfoodmicro.2014.04.010

add to favorites email to friend print save as pdf

Related Stories

Wonderful cheese is all in the culture

Jan 06, 2009

It's an age-old tradition that dates back at least 8,000 years but it seems we still have much to learn about the bacteria responsible for turning milk into cheese.

Making low-fat cheese taste better

Oct 15, 2013

In an effort to promote better public health, recent European law requires producers to limit fat content, particularly in cheese and cheese-based products.

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

18 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Lex Talonis
5 / 5 (1) May 10, 2014
Mmmmmm Food Porn....

Yummy CHEESE!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.