Insights into the stages of high-temperature superconductivity

May 20, 2014
X. Shi, Ping V. Lin, T. Sasagawa, V. Dobrosavljevic and D. Popovic. “Two-stage magnetic-field-tuned superconductor-insulator transition in underdoped La2-xSrxCuO4.” Nature Physics, Published Online (4 May 2014); doi:10.1038/nphys2961

Researchers at Tokyo Institute of Technology uncover the complexities of quantum phase fluctuations during the superconductor-insulator transition in high-temperature superconductors.

The superconductor-insulator transition (SIT) in high-temperature copper-oxide ('cuprate') superconductors is commonly triggered by the application of a magnetic field. However, due to the complexities of superconductivity, many questions are still to be answered about the exact process which underpins the SIT and the associated quantum phases the material undergoes.

Scientists had thought that high-temperature superconductors had a single quantum critical point at which the material switches from a superconductor to an insulator when a particular strength of magnetic field was applied. Now, an international team of researchers from the USA and Japan, including Takao Sasagawa at Tokyo Institute of Technology, have uncovered a two-stage transition in lanthanum-strontium-copper-oxide high-temperature superconductors (LSCOs), leading to the first complex of the behavior of LSCOs.

"The delicate interplay of thermal fluctuations, quantum fluctuations and disorder leads to a complex H-T [magnetic field-temperature] phase diagram of vortex matter," the authors state in their paper published in Nature Physics.

The researchers measured electrical resistivity of the material in magnetic fields up to 18 T at various temperatures down to 0.09 K, revealing the complete picture of the SIT. They deliberately used a variety of LSCOs that had been created using different techniques, so as to separate out the effects of sample preparation from more general superconductive behavior.

Sasagawa's team discovered that the LSCOs showed a two-stage magnetic-field-induced transition at T = 0 K before they become insulators. Firstly, the material forms a superconducting vortex lattice state known as 'Bragg glass'. In this phase, the material shows zero resistivity at finite temperature. After a first critical point is reached it passes into a disordered superconducting phase, or 'Vortex glass', wherein the arrangement of vortices becomes amorphous. In this phase, zero resistivity is only realized at absolute zero. After a second critical point is reached, superconductivity is lost and the LSCOs become insulating.

The researchers conclude; "Our results provide important insight into the interplay of vortex line physics and quantum criticality in high-temperature superconductors, bridging the gap between their behavior in the high-T 'classical' region and the less-explored low-T 'quantum' region."

Background

Superconductivity

Superconductors are materials that can maintain a perpetual electrical current, without the need for a power source, at certain temperatures. It was thought that only super-cooled materials (at temperatures below 30 K, or -243 C) were capable of superconductivity, but copper-oxide 'cuprate' and pnictide (iron and arsenic) superconductors belong in the class of high-temperature superconductors which work at temperatures as high as 138 K (-135 C). A main aim of current research is to explain the mechanism of high-temperature superconductivity and to find a superconductor that will work at room temperature.

Type II superconductors and vortex states

Type II superconductors have a so-called mixed or 'vortex' state under a magnetic field - internal 'vortices' of superconducting currents are generated which surround cores of the normal state of material (metallic state for conventional superconductors) and create quantized magnetic flux lines. The movements of the vortices can generate tiny amounts of resistance, meaning the superconductivity is not perfect. The vortices can be 'pinned' or frozen in place on the bulk material in order to make a zero-resistance superconducting state. In , superconductivity is completely lost at a certain magnetic field where the normal-state cores of vortices are overlapped each other. In this case, a single-stage superconductor-'metal' transition takes place at absolute zero under magnetic fields. On the other hand, the behavior of high-temperature superconductors is unusual; the transition appears to be from a superconductor to an 'insulator', and a clear observation over the entire H-T phase diagram including has yet to be done.

Not just one 'quantum critical point'

The work by researchers at Florida State University (led by Professor Popovic) and Tokyo Institute of Technology (led by Professor Sasagawa) proves for the first time that LSCO high-temperature go through two quantum critical points before becoming insulators, due to the subtle effects of temperature fluctuations and disruptions on the vortex state. Their research could improve understanding of under magnetic fields and provide an important insight into the application of .

Explore further: MagLab scientists publish trailblazing superconductivity study

More information: X. Shi, Ping V. Lin, T. Sasagawa, V. Dobrosavljevic and D. Popovic. "Two-stage magnetic-field-tuned superconductor-insulator transition in underdoped La2-xSrxCuO4." Nature Physics, Published Online (4 May 2014); DOI: 10.1038/nphys2961

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

First in-situ images of void collapse in explosives

2 hours ago

While creating the first-ever images of explosives using an x-ray free electron laser in California, Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect ...

New approach to form non-equilibrium structures

22 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

George_Rajna
not rated yet Jul 07, 2014
Superconductivity and Quantum Entanglement: https://www.acade...nglement