How immune cells use steroids

May 08, 2014
How immune cells use steroids
Teichmann and colleagues, using data from single-cell genomics experiments, found that type 2 T-helper cells produce a steroid involved in immune cell regulation. Credit: National Institutes of Health

Researchers at the European Bioinformatics Institute (EMBL-EBI) and the Wellcome Trust Sanger Institute have discovered that some immune cells turn themselves off by producing a steroid. The findings, published in Cell Reports, have implications for the study of cancers, autoimmune diseases and parasitic infections.

If you've ever used a steroid, for example cortisone cream on eczema, you'll have seen first-hand how efficient steroids are at suppressing the immune response. Normally, when your body senses that have finished their job, it produces steroids –but which cells actually do that?

In this latest study, scientists looked at Th2 immune cells during parasitic infection and saw that at a certain point, these cells produce a steroid called pregnenolone.

"We were really surprised to see that these immune cells are producing a steroid. In cell culture, we see that the steroids play a part in regulating T cell proliferation," says Bidesh Mahata in the Teichmann group at EMBL-EBI and Sanger, who designed the study. "We had already seen that T-helper cells were producing , but initially we were blind – what was going on?"

"Because we had access to data from single-cell sequencing experiments, we could conduct deep statistical analyses on a very large and comprehensive dataset," explains Sarah. "That pointed us to the genes involved in pregnenolone production at the point when Th2 cells are being produced, and we could deduce that the Th2 cells themselves were involved in immunosuppression."

The researchers suggest that bringing the immune system back into balance is an intrinsic part of this particular .

"We confirmed our findings experimentally, showing that pregnenolone inhibits both Th and B cell immunoglobulin class switching," adds Bidesh. "We think this points to the idea that Th2 cells differentiate into steroid-producing cells as part of a larger mechanism to bring the back into balance."

The findings from this study are strengthened by those of the Gelfand group at National Jewish Health in Denver, US. The next step for the Genome Campus group is to figure out how the process starts, what other tissues are involved and which types of infection give rise to this response.

Explore further: Sculpting a cell's backside: New protein found to help cells move from behind

More information: Paper: Mahata, B., et al. (2014) Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Reports (in press); DOI: 10.1016/j.celrep.2014.04.011 . http://www.cell.com/cell-reports/abstract/S2211-1247(14)00298-8

Related Stories

Salmonella infection mitigates asthma

Jan 23, 2014

Researchers from Germany have identified the mechanism by which Salmonella infections can reduce the incidence of asthma in mice. The research, which appears ahead of print in the journal Infection and Immunity, opens up new ...

Recommended for you

C. difficile needs iron, but too much is hazardous

16 hours ago

Those bacteria that require iron walk a tightrope. Iron is essential for their growth, but too much iron can damage DNA and enzymes through oxidation. Therefore, bacteria have machinery to maintain their ...

Researchers discover strong break on cell division

16 hours ago

The protein complex SWI/SNF that loosens tightly wrapped up DNA is also a strong inhibitor of cell division, at the time that cells take on specialized functions. Professor Sander van den Heuvel and PhD researcher ...

A checkpoint enzyme for flawless cell division

16 hours ago

The error-free distribution of genetic material during cell division is important for preventing the development of tumor cells. Prof. Erich Nigg's research group at the Biozentrum, University of Basel, has ...

Together bacteria invade antibiotic landscapes

16 hours ago

Antibiotics kill bacteria – or at least they are supposed to, although unfortunately this does not always result in a cure. Scientists at TU Delft's Kavli Institute of Nanoscience have discovered that bacteria ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.