Image: A peppering of craters at the Moon's south pole

May 26, 2014
Credit: ESA/SMART-1/AMIE camera team; image mosaic: M. Ellouzi/B. Foing

(Phys.org) —The dark and shadowed regions of the Moon fascinate astronomers and Pink Floyd fans alike. Our Moon's rotation axis has a tilt of 1.5º, meaning that some parts of its polar regions never see sunlight – the bottoms of certain craters, for example, are always in shadow.

Imaged during summertime in the Moon's southern hemisphere by the Advanced Moon Imaging Experiment on ESA's SMART-1 spacecraft, this mosaic shows a crater-riddled region spanning the lunar south pole. It is made up of around 40 individual images taken between December 2005 and March 2006, and covers an area of about 500 x 150 km.

The craters visible here include (from right to left, starting with the largest round shape visible in the frame) the Amundsen, Faustini, Shoemaker, Shackleton and de Gerlache craters. Click here for an annotated map.

Amundsen is the largest of the bunch at 105 km across, followed by Shoemaker (50 km), Faustini (39 km), de Gerlache (32 km) and Shackleton (19 km). This group of craters all look different, see varying levels of sunlight and display a range of interesting properties.

Shackleton crater, the small circle visible to the left of centre, contains the south pole within its rim. By using SMART-1 images to explore the number of small scattered on the smooth, dark surface surrounding Shackleton, scientists have found this crater to be older than the Apollo 15 landing site (3.3 billion years), but younger than the Apollo 14 site (3.85 billion years).

Shoemaker crater, visible to the upper left of centre, is notable because of the 1999 Lunar Prospector mission, which deliberately crashed into the crater in an attempt to create a detectable plume of water vapour by heating any that may have been present. No vapour was spotted. However, all is not lost; some permanently shadowed regions have been in the dark for millions of years, and it is still possible that they may contain water ice deposited by comets and water-rich asteroids.

Studying the dark depths of these craters could tell us not just about the history of the Moon, but also about Earth, helping us to understand better how, and how much, water and organic material may have been transferred from the Moon to Earth over its history.

Explore further: Cascading dunes in a Martian crater

Related Stories

New lunar south polar maps from SMART-1

Mar 11, 2008

Newly-released images of the lunar south-polar region obtained by ESA’s SMART-1 are proving to be wonderful tools to zero-in on suitable study sites for potential future lunar exploration missions.

Cascading dunes in a Martian crater

May 16, 2014

A new mosaic from ESA's Mars Express shows a swirling field of dark dunes cascading into sunken pits within a large impact crater.

Smart mapping at the Moon's North pole

Oct 01, 2013

(Phys.org) —ESA's SMART-1 mission to the Moon – the first ESA spacecraft to travel to and orbit the Moon – was launched 10 years ago, on 27 September 2003, on an Ariane 5 from Europe's spaceport in ...

Recommended for you

Strong evidence for coronal heating theory presented

1 hour ago

The Sun's surface is blisteringly hot at 6,000 kelvins or 10,340 degrees Fahrenheit—but its atmosphere is another 300 times hotter. This has led to an enduring mystery for those who study the Sun: What ...

The view from up there, down here

5 hours ago

When many people saw the first stunning photos of the fragile blue marble of Earth from space, it changed their outlook of humanity. It was a singular moment in time when people around the world were watching ...

The weird ways fire behaves in space (w/ Video)

6 hours ago

Light a match on earth and you can expect the flame to shoot up in a tapering bulb. But light that match in space and you might not even recognize the small, blue orb at the tip. That's because fire behaves ...

Russia loses comms with ISS cargo spacecraft (Update)

9 hours ago

Astronauts aboard the International Space Station were left with a long wait Tuesday to get their latest food and fuel deliveries after an unmanned Russian supply ship lost communications following takeoff.

Liquid crystal bubble OASIS in space

21 hours ago

No matter how beautiful or crystal clear the bubbling waters of an oasis may be, they seldom lead to technology breakthroughs. Yet, NASA's OASIS investigation's bubbles may lead to an ocean of new improvements ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

rockwolf1000
not rated yet May 27, 2014
"Our Moon's rotation axis has a tilt of 1.5º, meaning that some parts of its polar regions never see sunlight – the bottoms of certain craters, for example, are always in shadow."

I fail to see how the axial tilt has anything to do with how much sunlight it receives. Earth has a much higher axial tilt and all regions get pretty much the same amount of daylight yearly. Now, IF the axial tilt was somehow tidally locked to the sun then it would be possible for the polar region tilted away from the sun would be continually dark, but this is not the case.

Craters near the poles are different story however.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.