Research suggests human microbiome studies should include a wider diversity of populations

May 11, 2014

Microbial samples taken from populations living in the U.S. and Tanzania reveal that the microbiome of the human hand is more varied than previously thought, according to new research published in the journal Microbiology. These findings suggest that the 'standard' hand microbiome varies depending on location and lifestyle.

Results compared the microbes on the hands of women in the U.S. and Tanzania and found that organisms that have commonly been identified in prior skin microbiome studies were highly abundant on U.S. hands, while the most abundant bacterial species on Tanzanian hands were associated with the environment, particularly soil.

The team of researchers from Yale University, Stanford University and Johns Hopkins University Bloomberg School of Public Health, took hand wash samples from 15 adult American women and 29 adult Tanzanian women to compare the species of microorganisms present. In the U.S. group, all participants were graduate students, 13 of white European origin, while two were Chinese-American. In the Tanzanian group, all women were caregivers to children under 5 years of age, living in a low-income urban environment.

Dr Jordan Peccia from Yale University, who led the work, said: "If we ever hope to understand how the microbiome affects health and how environmental interactions alter it, we have to expand research to cover different populations.

"The microbial population on the graduate students' hands looks like what we think the hand microbiome 'should look like', but we can't assume that the human microbiome is a standard thing. Our research has shown that the on the things people use to interact with the environment the most – their hands – is dramatically different between groups."

The predominant microbial groups found on the US hands included members of the Propionibacteriaceae, Staphylococcaceae and Streptococcacease groups of bacteria, similar to those previously found in hand microbiome studies. In contrast, the Tanzanian samples included members of the Rhodobacteraceae and Nocardiodaceae not previously thought to be common colonisers of human skin. These groups are commonly associated with soil and aquatic environments.

The lifestyle differences between the groups are notable. None of the U.S. group was a caregiver for young children and the group spent the majority of their time indoors. The Tanzanian live in open-air dwellings in Dar es Salaam, Tanzania, and spend large amounts of time outdoors.

These results help to expand human results beyond U.S. and European populations, demonstrating the important role that the environment plays in shaping the microbes on people's hands.

Explore further: Report answers questions about the human microbiome and its role in health, obesity

More information: 'Hand Bacterial Communities Vary Across Two Different Human Populations' published online ahead of print in Microbiology.

add to favorites email to friend print save as pdf

Related Stories

Your body's microbiome has a unique 'fingerprint'

Apr 23, 2013

The microbiome is your body's set of microbial communities; microbial cells outnumber human cells roughly ten to one. Through studying the microbiome, scientists are learning more the relationship between these microbes and ...

Lifestyle determines gut microbes

Apr 15, 2014

An international team of researchers has for the first time deciphered the intestinal bacteria of present-day hunter-gatherers.

Recommended for you

Researchers discover new strategy germs use to invade cells

18 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

19 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0