Graphene photonics breakthrough promises fast-speed, low-cost communications

May 09, 2014 by Lea Kivivali
Graphene photonics breakthrough promises fast-speed, low-cost communications

(Phys.org) —Swinburne researchers have developed a high-quality continuous graphene oxide thin film that shows potential for ultrafast telecommunications.

Associate Professor Baohua Jia led a team of researchers from Swinburne's Centre for Micro-Photonics to create a micrometre thin film with record-breaking optical nonlinearity suitable for high performance integrated used in all-optical communications, biomedicine and photonic computing.

"Such a laser patternable highly nonlinear thin film, about one hundredth of a human hair, has not been achieved by any other material," Professor Jia said.

Graphene is derived from carbon, the fourth most abundant element on earth. It has many useful properties, including light transparency and electrical conductivity, and can be completely recycled.

To create the thin film the researchers spin coated solution to a glass surface.

Using a laser as a pen they created microstructures on the graphene oxide film to tune the nonlinearity of the material.

"We have developed a new platform in which we can fabricate each optical component with desired nonlinearity," PhD student Xiaorui Zheng said.

"Currently with or all you have to fabricate each component individually and try to integrate them together.

"Now we can provide a film, on which everything can be fabricated with laser and then it is automatically integratable."

Current manufacturing methods in semiconductor labs require expensive cleanrooms to fabricate photonic chips. The fabrication and writing of this photonic material is simple and low cost.

"Using this new method, we have demonstrated the possibility of manufacturing a scalable and cheap material," Professor Jia said.

The research is published in Advanced Materials.

The researchers are now working to fabricate a functional device.

Explore further: Improved design of lasers on optoelectronic chips will advance optical communications

More information: Zheng, X., Jia, B., Chen, X. and Gu, M. (2014)," In Situ Third-Order Non-linear Responses During Laser Reduction of Graphene Oxide Thin Films Towards On-Chip Non-linear Photonic Devices." Adv. Mater., 26: 2699–2703. doi: 10.1002/adma.201304681

add to favorites email to friend print save as pdf

Related Stories

Huge grains of copper promote better graphene growth

Dec 06, 2013

To technology insiders, graphene is a certified big deal. The one-atom thick carbon-based material elicits rhapsodic descriptions as the strongest, thinnest material known. It also is light, flexible, and ...

Butterfly inspires new nanotechnology

Sep 02, 2013

By mimicking microscopic structures in the wings of a butterfly, an international research team has developed a device smaller than the width of a human hair that could make optical communication faster and ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet May 09, 2014
I wonder if this graphene-oxide would be good material for making metamaterial sheets by this laser patterning.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.