Graphene photonics breakthrough promises fast-speed, low-cost communications

May 9, 2014 by Lea Kivivali
Graphene photonics breakthrough promises fast-speed, low-cost communications

(Phys.org) —Swinburne researchers have developed a high-quality continuous graphene oxide thin film that shows potential for ultrafast telecommunications.

Associate Professor Baohua Jia led a team of researchers from Swinburne's Centre for Micro-Photonics to create a micrometre thin film with record-breaking optical nonlinearity suitable for high performance integrated used in all-optical communications, biomedicine and photonic computing.

"Such a laser patternable highly nonlinear thin film, about one hundredth of a human hair, has not been achieved by any other material," Professor Jia said.

Graphene is derived from carbon, the fourth most abundant element on earth. It has many useful properties, including light transparency and electrical conductivity, and can be completely recycled.

To create the thin film the researchers spin coated solution to a glass surface.

Using a laser as a pen they created microstructures on the graphene oxide film to tune the nonlinearity of the material.

"We have developed a new platform in which we can fabricate each optical component with desired nonlinearity," PhD student Xiaorui Zheng said.

"Currently with or all you have to fabricate each component individually and try to integrate them together.

"Now we can provide a film, on which everything can be fabricated with laser and then it is automatically integratable."

Current manufacturing methods in semiconductor labs require expensive cleanrooms to fabricate photonic chips. The fabrication and writing of this photonic material is simple and low cost.

"Using this new method, we have demonstrated the possibility of manufacturing a scalable and cheap material," Professor Jia said.

The research is published in Advanced Materials.

The researchers are now working to fabricate a functional device.

Explore further: Singapore researchers invent broadband graphene polarizer

More information: Zheng, X., Jia, B., Chen, X. and Gu, M. (2014)," In Situ Third-Order Non-linear Responses During Laser Reduction of Graphene Oxide Thin Films Towards On-Chip Non-linear Photonic Devices." Adv. Mater., 26: 2699–2703. doi: 10.1002/adma.201304681

Related Stories

Butterfly inspires new nanotechnology

September 2, 2013

By mimicking microscopic structures in the wings of a butterfly, an international research team has developed a device smaller than the width of a human hair that could make optical communication faster and more secure.

Huge grains of copper promote better graphene growth

December 6, 2013

To technology insiders, graphene is a certified big deal. The one-atom thick carbon-based material elicits rhapsodic descriptions as the strongest, thinnest material known. It also is light, flexible, and able to conduct ...

Recommended for you

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

Study explores nanoscale structure of thin films

August 4, 2015

The world's newest and brightest synchrotron light source—the National Synchrotron Light Source II (NSLS-II) at the U.S. Department of Energy's Brookhaven National Laboratory—has produced one of the first publications ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet May 09, 2014
I wonder if this graphene-oxide would be good material for making metamaterial sheets by this laser patterning.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.