Galectins direct immunity against bacteria that employ camouflage

May 11, 2014
This is a schematic of microbial glycan arrays. Credit: Stowell et al, Nature Chemical Biology (2014)

Our bodies produce a family of proteins that recognize and kill bacteria whose carbohydrate coatings resemble those of our own cells too closely, scientists have discovered.

Called galectins, these proteins recognize carbohydrates from a broad range of disease-causing bacteria, and could potentially be deployed as antibiotics to treat certain infections. The results are scheduled for publication in Nature Chemical Biology.

Researchers at Emory University School of Medicine made the discovery with the aid of glass slides coated with an array of over 300 different glycans (carbohydrates found on the surfaces of cells) derived from bacteria, many of which are found in the intestine. One can think of these slides – called microbial glycan microarrays – as wardrobes displaying a variety of clothes worn by .

"Many microbes cover themselves with glycans that somewhat resemble our own cells," says Richard D. Cummings, PhD, professor and chair of the Department of Biochemistry at Emory University School of Medicine. "That limits how well the immune system can use antibodies to respond to those microbes."

To prevent auto-immune attack, our bodies usually don't make antibodies against molecules found on our own cells. That leaves gaps in our defenses that bacteria could exploit. Several of those gaps are filled by galectins, the researchers found.

The discovery expands upon an initial finding, published in Nature Medicine in 2010, describing galectins that recognize and kill bacteria that express the human blood group B antigen.

The Emory researchers collaborated with the laboratory of James C. Paulson, PhD, at the Scripps Research Institute (TSRI). Co-first authors of the paper are Sean Stowell, MD/PhD (a resident in in laboratory and transfusion medicine at Emory), Connie Arthur, PhD (postdoctoral fellow at Emory with Stowell), and research assistant Ryan McBride at TSRI.

In contrast to antibodies, the galectins kill the bacteria directly, without needing other parts of the immune system to pile on. The researchers identified several varieties of bacteria (Pseudomonas aeruginosa, Providencia alcalifaciens, Klebsiella pneumoniae, and Serratia marcescens, for example) targeted for killing by galectins. In some cases, only certain strains of a given were vulnerable, because only those strains carried the target glycan.

"These studies have opened the way to understanding the ways in which adaptive or antibody-based factors work together with innate or galectin-based factors to give us immunity against a broad range of microbes," Cummings says.

In addition, the microarray technology provides tools to study glycan-binding antibodies and galectins in populations, he says.

"These studies use tiny amounts of blood – just a few drops – and show how glycan microarrays could supersede previous technology," he says. "Using these tools, investigators could identify developmental- and age-specific differences in anti-microbial glycan antibodies in humans, which may predict susceptibility to disease."

Explore further: Research study takes deeper look at the role of gut microbes in the immune system

More information: Microbial glycan microarrays define key features of host-microbial interactions, Nature Chemical Biology, DOI: 10.1038/nchembio.1525

add to favorites email to friend print save as pdf

Related Stories

Bacteria-killing proteins cover blood type blind spot

Feb 14, 2010

A set of proteins found in our intestines can recognize and kill bacteria that have human blood type molecules on their surfaces, scientists at Emory University School of Medicine have discovered.

Fighting bacteria with a new genre of antibodies

Apr 24, 2013

In an advance toward coping with bacteria that shrug off existing antibiotics and sterilization methods, scientists are reporting development of a new family of selective antimicrobial agents that do not ...

Antibodies trick bacteria into killing each other

Nov 14, 2011

The dominant theory about antibodies is that they directly target and kill disease-causing organisms. In a surprising twist, researchers from the Albert Einstein College of Medicine have discovered that certain antibodies ...

Recommended for you

World's fastest manufacture of battery electrodes

2 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

2 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

3 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

New insights on carbonic acid in water

17 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

User comments : 0