What fuels Salmonella's invasion strategy?

May 05, 2014
This is Salmonella Typhimurium. Credit: Institute of Food Research

Certain strains of Salmonella bacteria such as Salmonella Typhimurium (S. Typhimurium) are among of the most common causes of food-borne gastroenteritis. Other strains of Salmonella such as S. Typhi are responsible for typhoid fever, which causes 200,000 deaths around the world each year. Ensuring food is clear of contamination, and water is clean are key to reducing the effects Salmonella can have, but we also need more effective ways to combat Salmonella once it's inside our bodies.

To address this the Institute of Food Research, strategically supported by the Biotechnology and Biological Sciences Research Council, has been studying S. Typhimurium bacteria to understand, not only how they transmit through the food chain, but why they are so effective and dangerous once inside us.

If we consume food or water contaminated with S. Typhimurium, the first stage of infection is to get into the cells that line our gut. These epithelial cells are adapted to defend against such attacks, but Salmonella has a wealth of strategies to overcome these and make it more virulent. It also needs these to overcome the cells of the immune system, which it invades to move around the body. We are learning a lot about these virulence genes, but until this new study, published in the journal PLOS ONE, we didn't know how Salmonella fuelled itself for this. A source of energy and nutrition is vital, and knowing what Salmonella uses could inform new strategies to prevent infection.

To discover more about Salmonella's feeding habits, Dr Arthur Thompson and his team constructed S. Typhimurium strains lacking certain key genes in important metabolic pathways. They then examined how well these mutated strains reproduced in human epithelial cells, grown in cultures.

"We found that glucose is the major nutrient used by S. Typhimurium," said Dr Thompson. Salmonella converts glucose to pyruvate in a process called glycolysis, which also releases energy needed to fuel growth and reproduction. Knocking out one enzyme in glycolysis, and enzymes used to transport glucose into the bacteria severely reduced S. Typhimurium's ability to reproduce in , but didn't eradicate it completely. "This suggests that although S. Typhimurium requires glucose, it is also able to use other nutrients, and that's something we're now studying," said Dr Thompson.

This contrasts with previous findings from similar experiments on macrophage cells by the IFR team, as for successful macrophage invasion, glycolysis is absolutely essential. Macrophages are the immune cells sent to destroy Salmonella, but instead Salmonella invades the macrophages. Infected macrophages can carry Salmonella around the body causing a potentially fatal systemic infection.

"We now have a much more complete picture of the nutritional needs of Salmonella, which is important since this information may also suggest new ways to develop potential therapeutic interventions," said Dr Thompson.

Explore further: Do people and pigs share salmonella strains?

add to favorites email to friend print save as pdf

Related Stories

Do people and pigs share salmonella strains?

Apr 03, 2014

If antimicrobial-resistant Salmonella is showing up in pigs, then are bacon-loving people also at risk? In his latest research, NC State population health and pathobiology professor Sid Thakur looks at serotypes, ...

Egg handling hygiene to reduce food poisoning

Oct 31, 2013

Careful and hygienic handling of eggs through the supply chain, and in the kitchen, is vital for reducing Australia's outbreaks of salmonella poisoning, according to University of Adelaide research.

Typhoid Fever: A race against time

Jan 16, 2014

The life-threatening disease typhoid fever results from the ongoing battle between the bacterial pathogen Salmonella and the immune cells of the body. Prof. Dirk Bumann's research group at the Biozentrum ...

Hydrogen-powered invasion

Dec 11, 2013

Although mankind is only just beginning to use hydrogen as an energy source, the concept has been established in nature for a long time. Researchers at ETH Zurich have discovered that the diarrhea-causing ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0