Engineers fabricate microscale silk proteins patterns for use in tissue engineering and 'green devices'

May 13, 2014 by Sathya Achia Abraham
A wide range of patterns and features can be formed from silk proteins at small length scales. For example, microscale dots can be printed on glass to form a silk hologram. Credit: Vamsi Yadavalli, Ph.D./VCU.

(Phys.org) —When most people think of silk, the idea of a shimmering, silk scarf, or luxurious gown comes to mind. But few realize, in its raw form, this seemingly delicate fiber is actually one of the strongest natural materials around – often compared to steel.

Silk, made up of the proteins fibroin and sericin, comes from the silkworm, and has been used in textiles and for thousands of years. The Food and Drug Administration has classified silk as an approved biomaterial because it is nontoxic, biodegradable and biocompatible.

Those very properties make it an attractive candidate for use in widespread applications in tissue engineering. One day, silk could be an exciting route to create environmentally sound devices called "green devices," instead of using plastics. However, forming complex architectures at the microscale or smaller, using silk proteins and other biomaterials has been a challenge for materials experts.

Now, a team of researchers from the Virginia Commonwealth University School of Engineering has found a way to fabricate precise, biocompatible architectures of silk proteins at the microscale.

Two companion papers highlighting this work by Nicholas Kurland, Ph.D., a former graduate student in the VCU School of Engineering, and Vamsi Yadavalli, Ph.D., associate professor of chemical and life science engineering, were recently published in the journal Advanced Materials, one of the top materials science journals.

Kurland and Yadavalli successfully combined with the technique of photolithography in a process they term "silk protein lithography" (SPL). Photolithography, or "writing using light," is the method used to form circuits used in computers and smartphones, Yadavalli said.

According to Yadavalli, SPL begins by extracting the two main proteins from cocoons. These proteins are chemically modified to render them photoactive, and coated on glass or silicon surfaces as a thin film. As ultraviolet light passes through a stencil-like patterned mask, it crosslinks light-exposed proteins, turning them from liquid to solid.

The protein in unexposed areas is washed away, leaving behind patterns controllable to 1 micrometer. In comparison, a single human hair is 80-100 micrometers in diameter.

"These protein structures are high strength and excellent at guiding cell adhesion, providing precise spatial control of cells," Yadavalli said.

"One day, we can envision implantable bioelectronic devices or tissue scaffolds that can safely disappear once they perform their intended function," he said.

The team's current research focuses on combining the photoreactive material with techniques such as rapid prototyping, and developing flexible bioelectronic scaffolds.

Explore further: Spider silk is a wonder of nature, but it's not stronger than steel

More information: Kurland, N. E., Dey, T., Wang, C., Kundu, S. C. and Yadavalli, V. K. (2014), "Silk Protein Lithography as a Route to Fabricate Sericin Microarchitectures." Adv. Mater.. doi: 10.1002/adma.201400777

Kurland, N. E., Dey, T., Kundu, S. C. and Yadavalli, V. K. (2013), "Precise Patterning of Silk Microstructures Using Photolithography." Adv. Mater., 25: 6207–6212. doi: 10.1002/adma.201302823

Related Stories

GM silkworms bred to spin fluorescent

June 21, 2013

(Phys.org) —Scientists in Japan have genetically engineered silkworms to create red, green or orange silks that glow under fluorescent lights.

Synthetic spider silk strong enough for a superhero

March 5, 2014

Spider silk of fantastical, superhero strength is finally speeding toward commercial reality—at least a synthetic version of it is. The material, which is five times stronger than steel, could be used in products from bulletproof ...

Addition of pectin molecules strengthens silk biomaterials

April 25, 2014

The human body has limited ability to self-repair damage to cartilage or bone. Implantable 'bioscaffold' materials that can be seeded with cells can potentially be used to regenerate these critical tissues. One such biomaterial ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

3-D printed structures that 'remember' their shapes

August 26, 2016

Engineers from MIT and Singapore University of Technology and Design (SUTD) are using light to print three-dimensional structures that "remember" their original shapes. Even after being stretched, twisted, and bent at extreme ...

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.