Empa mission in space

May 07, 2014
Rosetta ROSINA DFMS (EQM) Credit: Contraves Space

Little research has been done on comets and they still hold many secrets. One theory is that comets brought water (and thus possibly even life) to earth. Although space probes have been able to carry out isolated investigations, this has only been while the comets were flying past. At least until now. The European Space Agency (ESA) developed the Rosetta space probe in conjunction with numerous European institutions.

This will be the first probe not only to collect measurement data "en passant" as it were, but to accompany the comet – and even to land on it. Various devices on board are measuring, mapping and analysing the comet and the gases and molecules in its environment over a period of two years. Even the interior of 67P/Churyumov-Gerasimenko will not be spared. A specially designed "lander" will - as its name implies - land on the surface of the comet and investigate its properties and its nucleus.

How was our solar system formed?

Numerous institutions are involved in the project, including the University of Bern, which was responsible for developing ROSINA (the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis). This group of instruments consists of two and a pressure sensor. The researchers from Bern brought Empa on board to undertake the development and manufacture of the ion optical sensors for the two spectrometers. These not only had to be lightweight, but also had to withstand the harsh conditions of space. After its cosmic rendezvous with the comet, ROSINA will analyse ions and neutral gas particles in the (extremely "thin") atmosphere and in the ionosphere of 67P/Churyumov-Gerasimenko. This will enable conclusions to be drawn about how the solar system was formed. The DFMS (double focusing mass spectrometer) has two different operating modes, a gas mode for measuring neutral gas particles and an ion mode for analysing ionised particles. The RTOF (reflectron time-of-flight) mass spectrometer enhances the DFMS by increasing the sensitivity of the whole instrument. Mass analysis is carried out by means of the time-of-flight technique. This allows the combination of extremely high mass and time resolutions. This enables snapshots to be taken over the entire measurement range from 1 to 1000 amu (atomic mass unit).

Compact and lightweight: Rosetta's time-of-flight mass spectrometer with Empa ion sources (right) and reflector (left) is almost a metre long and weighs about 15 kilograms.

Successful process development

The ion optical modules for the two mass spectrometers were developed and manufactured by a team led by Empa engineer Hans Rudolf Elsener. A major challenge was to translate the ideas and requirements of the astrophysicists into a multifunctional "space-grade" product capable of satisfying the highest demands: it had to be ultra-lightweight, mechanically robust, high-voltage resistant and very precise. In addition to making design modifications, Elsener also developed various processes to join "unusual" materials, such as metals and ceramics, to each other. The individual components were not screwed together as would usually be the case, but instead were brazed in a vacuum furnace. During this process, the materials are chemically bonded using brazing materials. This requires a range of different coatings, all of which have to be tested beforehand. The parts to be joined are in a solid state - only the brazing material is fused and reacts with either the coating or the base material.

The methods and technologies developed at Empa were so successful that further space projects soon followed. Elsener and his team are currently developing a new ion optical sensor for an even smaller and lighter mass spectrometer for the Russian/Indian "LUNA" Moon mission, and Empa engineers also recently made highly complex modules and sensors for the European/Japanese "BepiColombo" mission to Mercury.

Part of the DFMS (double focusing mass spectrometer): the individual components were joined together by means of vacuum brazing and electron beam welding.

The devices are running – and Rosetta is ready

Although the probe will not reach the comet until August, the first measurements have already been taken. During the flight to the comet, the mass spectrometer analysed Rosetta's exhaust gases and the components of the calibration gases. The equipment tests carried out recently were also successful and nothing now stands in the way of the encounter with 67P/Churyumov-Gerasimenko. However, the approach manoeuvre in May is likely to be critical. If the probe misses the comet's orbit, it will drift too far away to "attach" itself to it and accompany it. Once Rosetta is in the comet's orbit, however, the "real" measurements can begin - and will start to reveal more about comets.

Explore further: Rosetta: To chase a comet

add to favorites email to friend print save as pdf

Related Stories

Rosetta: To chase a comet

Jan 20, 2014

Comets are among the most beautiful and least understood nomads of the night sky. To date, half a dozen of these most heavenly of heavenly bodies have been visited by spacecraft in an attempt to unlock their ...

Rosetta's comet wakes up

Mar 10, 2014

(Phys.org) —It's back! After comet 67P/Churyumov-Gerasimenko had disappeared behind the Sun and out of the Earth's view last year in October, the target comet of ESA's Rosetta mission can now be seen again. ...

Uppsala researchers study the transformation of a comet

Jan 24, 2014

In July, Rosetta is expected to send the first images of comet 67P/Churyumov-Gerasimenko's nucleus, as seen from a large distance. The space probe will enter an orbit around the comet nucleus in August, where ...

Image: Rosetta's comet

Jan 21, 2014

(Phys.org) —ESA's Rosetta spacecraft woke up 20 January, after 31 months in deep space hibernation, to catch up with comet 67P/Churyumov–Gerasimenko.

Comet-probing robot to wake from hibernation

Mar 26, 2014

A fridge-sized robot lab hurtling through the Solar System aboard a European probe is about to wake from hibernation and prepare for the first-ever landing by a spacecraft on a comet.

Recommended for you

Orion on track at T MINUS 1 Week to first blastoff

9 hours ago

At T MINUS 1 Week on this Thanksgiving Holiday, all launch processing events remain on track for the first blast off of NASA's new Orion crew vehicle on Dec. 4, 2014 which marks the first step on the long ...

Bad weather delays Japan asteroid probe lift off

16 hours ago

Bad weather will delay the launch of a Japanese space probe on a six-year mission to mine a distant asteroid, just weeks after a European spacecraft's historic landing on a comet captivated the world.

Manchester scientists boost NASA's missions to Mars

Nov 27, 2014

Computer Scientists from The University of Manchester have boosted NASA space missions by pioneering a global project to develop programs that efficiently test and control NASA spacecraft.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.