Earth's lower mantle chemistry breakthrough

May 22, 2014
Diagram of the Earth. Credit: Kelvinsong/Wikipeida

Breaking research news from a team of scientists led by Carnegie's Ho-kwang "Dave" Mao reveals that the composition of the Earth's lower mantle may be significantly different than previously thought. These results are to be published by Science.

The lower mantle comprises 55 percent of the planet by volume and extends from 670 and 2900 kilometers in depth, as defined by the so-called transition zone (top) and the core-mantle boundary (below). Pressures in the lower mantle start at 237,000 times atmospheric pressure (24 gigapascals) and reach 1.3 million times atmospheric pressure (136 gigapascals) at the core-mantle boundary.

The prevailing theory has been that the majority of the lower mantle is made up of a single ferromagnesian silicate mineral, commonly called perovskite (Mg,Fe)SiO3) defined through its chemistry and structure. It was thought that perovskite didn't change structure over the enormous range of pressures and temperatures spanning the lower mantle.

Recent experiments that simulate the conditions of the lower mantle using laser-heated diamond anvil cells, at pressures between 938,000 and 997,000 times (95 and 101 gigapascals) and temperatures between 3,500 and 3,860 degrees Fahrenheit (2,200 and 2,400 Kelvin), now reveal that iron bearing perovskite is, in fact, unstable in the lower mantle.

The team finds that the mineral disassociates into two phases one a magnesium silicate perovskite missing iron, which is represented by the Fe portion of the chemical formula, and a new mineral, that is iron-rich and hexagonal in structure, called the H-phase. Experiments confirm that this iron-rich H-phase is more stable than iron bearing perovskite, much to everyone's surprise. This means it is likely a prevalent and previously unknown species in the lower . This may change our understanding of the deep Earth.

"We still don't fully understand the chemistry of the H-phase," said lead author Li Zhang, also of Carnegie. "But this finding indicates that all geodynamic models need to be reconsidered to take the H-phase into account. And there could be even more unidentified phases down there in the as well, waiting to be identified."

Explore further: Soil nutrients may limit ability of plants to slow climate change

More information: "Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle," by L. Zhang et al . Science, 2014. www.sciencemag.org/lookup/doi/10.1126/science.1250274

Related: New insight into the temperature of deep Earth: phys.org/news/2014-05-insight-temperature-deep-earth.html

Related Stories

A new kind of metal in the deep Earth

Dec 19, 2011

(PhysOrg.com) -- The crushing pressures and intense temperatures in Earth's deep interior squeeze atoms and electrons so closely together that they interact very differently. With depth materials change. New ...

Deep Earth heat surprise

Aug 09, 2013

The key to understanding Earth's evolution is to look at how heat is conducted in the deep lower mantle—a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface. Researchers at the Carnegie ...

Recommended for you

Ocean currents impact methane consumption

10 hours ago

Large amounts of methane - whether as free gas or as solid gas hydrates - can be found in the sea floor along the ocean shores. When the hydrates dissolve or when the gas finds pathways in the sea floor to ...

Study shines new light on the source of diamonds

15 hours ago

A team of specialists from four Australian universities, including the University of Western Australia, has established the exact source of a diamond-bearing rock for the first time.

Source of Earth's ringing? French team views ocean waves

15 hours ago

Three researchers in France have authored "How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s," published in Geophysical Research Letters, a journal of the Americ ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Bob Osaka
1 / 5 (1) May 23, 2014
If and when we are able to drill or dig far enough through the crust to reach the mantle we may find the chemistry more complicated.
Good job, but let's keep digging.
antialias_physorg
5 / 5 (4) May 23, 2014
That might take some time. As the article notes that region starts at 670km depth - and to verify the phase transitions by directly digging you have to go a lot deeper.

(Current record is about 12km. )
OdinsAcolyte
5 / 5 (1) May 23, 2014
A direct drill will not work. One could not maintain an open hole...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.