Earth's lower mantle chemistry breakthrough

May 22, 2014
Diagram of the Earth. Credit: Kelvinsong/Wikipeida

Breaking research news from a team of scientists led by Carnegie's Ho-kwang "Dave" Mao reveals that the composition of the Earth's lower mantle may be significantly different than previously thought. These results are to be published by Science.

The lower mantle comprises 55 percent of the planet by volume and extends from 670 and 2900 kilometers in depth, as defined by the so-called transition zone (top) and the core-mantle boundary (below). Pressures in the lower mantle start at 237,000 times atmospheric pressure (24 gigapascals) and reach 1.3 million times atmospheric pressure (136 gigapascals) at the core-mantle boundary.

The prevailing theory has been that the majority of the lower mantle is made up of a single ferromagnesian silicate mineral, commonly called perovskite (Mg,Fe)SiO3) defined through its chemistry and structure. It was thought that perovskite didn't change structure over the enormous range of pressures and temperatures spanning the lower mantle.

Recent experiments that simulate the conditions of the lower mantle using laser-heated diamond anvil cells, at pressures between 938,000 and 997,000 times (95 and 101 gigapascals) and temperatures between 3,500 and 3,860 degrees Fahrenheit (2,200 and 2,400 Kelvin), now reveal that iron bearing perovskite is, in fact, unstable in the lower mantle.

The team finds that the mineral disassociates into two phases one a magnesium silicate perovskite missing iron, which is represented by the Fe portion of the chemical formula, and a new mineral, that is iron-rich and hexagonal in structure, called the H-phase. Experiments confirm that this iron-rich H-phase is more stable than iron bearing perovskite, much to everyone's surprise. This means it is likely a prevalent and previously unknown species in the lower . This may change our understanding of the deep Earth.

"We still don't fully understand the chemistry of the H-phase," said lead author Li Zhang, also of Carnegie. "But this finding indicates that all geodynamic models need to be reconsidered to take the H-phase into account. And there could be even more unidentified phases down there in the as well, waiting to be identified."

Explore further: Scientists recreate extreme conditions deep in Earth's interior

More information: "Disproportionation of (Mg,Fe)SiO3 perovskite in Earth's deep lower mantle," by L. Zhang et al . Science, 2014. www.sciencemag.org/lookup/doi/10.1126/science.1250274

Related: New insight into the temperature of deep Earth: phys.org/news/2014-05-insight-temperature-deep-earth.html

Related Stories

A new kind of metal in the deep Earth

December 19, 2011

(PhysOrg.com) -- The crushing pressures and intense temperatures in Earth's deep interior squeeze atoms and electrons so closely together that they interact very differently. With depth materials change. New experiments and ...

Deep Earth heat surprise

August 9, 2013

The key to understanding Earth's evolution is to look at how heat is conducted in the deep lower mantle—a region some 400 to 1,800 miles (660 to 2,900 kilometers) below the surface. Researchers at the Carnegie Institution, ...

Recommended for you

New study sheds light on end of Snowball Earth period

August 24, 2015

The second ice age during the Cryogenian period was not followed by the sudden and chaotic melting-back of the ice as previously thought, but ended with regular advances and retreats of the ice, according to research published ...

Earth's mineralogy unique in the cosmos

August 26, 2015

New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Bob Osaka
1 / 5 (1) May 23, 2014
If and when we are able to drill or dig far enough through the crust to reach the mantle we may find the chemistry more complicated.
Good job, but let's keep digging.
antialias_physorg
5 / 5 (4) May 23, 2014
That might take some time. As the article notes that region starts at 670km depth - and to verify the phase transitions by directly digging you have to go a lot deeper.

(Current record is about 12km. )
OdinsAcolyte
5 / 5 (1) May 23, 2014
A direct drill will not work. One could not maintain an open hole...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.