New 'doping' method improves properties of carbon nanotubes

May 09, 2014 by Rase Mccray

(Phys.org) —Yale University researchers have developed a simple method for controlling the "doping" of carbon nanotubes (CNTs), a chemical process that optimizes the tubes' properties. Reported April 29 in Nano Letters, the method could improve the utility of doped CNTs in a number of nanotechnologies and flexible electronics, including CNT-silicon hybrid solar energy cells.

Led by André Taylor of the Yale School of Engineering & Applied Science and Nilay Hazari of Yale's chemistry department, the researchers developed a method that uses organic compounds with a metal core—known as metallocenes—to produce two possible types of doped CNTs.

A small amount of metallocenes in solution is deposited on the CNTs, which are then rotated at high speed. This simple "spin coating" process spreads the solution evenly across the surface of the CNTs, resulting in high doping levels that can improve electrical utility.

Using the method, the researchers found that doping with electron-deficient metallocenes, such as those with a cobalt core, results in CNTs with more positively charged electron "holes" than available negatively charged electrons to fill those holes; these CNTs are known as "p-type" because of their positive charge. On the other hand, doping with electron-rich metallocenes, such as those with a vanadium core, results in thenegatively charged "n-type" CNTs, which have more electrons than holes.

According to the team, which also includes doctoral candidates Xiaokai Li (lead author) and Louise Guard, metallocenes are the first generic family of molecules demonstrated to produce both p-type and n-type doping.

"We showed that by changing the coordinate metal of a metallocene, we could actually render these carbon nanotubes p-type or n-type at will, and we can even go back and forth between the two," said Taylor, who is associate professor of chemical and environmental engineering. Hazari is assistant professor of chemistry.

The finding is significant, Taylor said, because although p-type doping is common and even occurs naturally when CNTs interact with air, previous n-type doping methods produced low doping levels that could not be effectively used in devices. The Yale team's method produced an n-type CNT-silicon cell more than 450 times more efficient than the best solar cells of this type.

"If you have a high ratio, then you have better electron transport, better mobility, and ultimately a better functioning device," said Taylor. "As such, these findings move us one step further towards our goal of improving the efficiency of hybrid solar ."

Explore further: Flexible carbon nanotube circuits made more reliable, power efficient

More information: "Controlled doping of carbon nanotubes with metallocenes for application in hybrid carbon nanotube/Si solar cells." Xiaokai Li, Louise M Guard, Jie Jiang, Kelsey Sakimoto, Jing-Shun Huang, Jianguo Wu, Jinyang Li, Lianqing Yu, Ravi Pokhrel, Gary W. Brudvig, Sohrab Ismail-Beigi, Nilay Hazari, and Andre Taylor. Nano Letters Just Accepted Manuscript. DOI: 10.1021/nl500894h

add to favorites email to friend print save as pdf

Related Stories

Carbon nanotubes grow in combustion flames

Apr 01, 2014

Professor Stephan Irle of the Institute of Transformative Bio-Molecules (WPI-ITbM) at Nagoya University and co-workers at Kyoto University, Oak Ridge National Lab (ORNL), and Chinese research institutions ...

Carbon nanotube composites for enzymes and cosmetics

Sep 06, 2011

Japanese researchers have developed a low cost and efficient method for producing electrically conducting composites based on electrostatic adsorption of CNTs onto resin and ceramic particles for applications ...

Recommended for you

'Mind the gap' between atomically thin materials

Nov 23, 2014

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.