Where DNA's copy machine pauses, cancer could be next

May 5, 2014

Each time a human cell divides, it must first make a copy of its 46 chromosomes to serve as an instruction manual for the new cell. Normally, this process goes off without a hitch. But from time to time, the information isn't copied and collated properly, leaving gaps or breaks that the cell has to carefully combine back together.

Researchers have long recognized that some regions of the chromosome,called "fragile sites," are more prone to breakage and can be a breeding ground for human cancers. But they have struggled to understand why these weak spots in the genetic code occur in the first place.

A comprehensive mapping of the fragile sites in yeast by a team of Duke researchers shows that fragile sites appear in specific areas of the genome where the DNA-copying machinery is slowed or stalled, either by certain sequences of DNA or by structural elements. The study, which appears May 5 in Proceedings of the National Academy of Sciences, could give insight into the origins of many of the genetic abnormalities seen in solid tumors.

"Other studies have been limited to looking at fragile sites on specific genes or chromosomes," said Thomas D. Petes, Ph.D., the Minnie Geller professor of molecular genetics and microbiology at Duke University School of Medicine. "Ours is the first to examine thousands of these sites across the entire genome and ask what they might have in common."

The term "fragile sites" was first coined in the 1980s to describe the chromosome breaks that appeared whenever a molecule called DNA polymerase –- responsible for copying DNA—was blocked in mammalian cells. Since that discovery, research in the yeast Saccharomyces cerevisiae has shown that certain DNA sequences can make the polymerase slow down or pause as it makes copies. However, none of them have shown how those delays result in fragile sites.

In this study, Petes wanted to find the link between the copier malfunction and its genetic consequences on a genome-wide scale. First, he knocked down the levels of DNA polymerase in yeast cells to ten-fold lower than normal. Then he used microarray or "gene chip" technology to map where segments of DNA had been rearranged, indicating that a fragile site had once been there.

After finding those fragile sites, his laboratory spent more than a year combing through the literature for any recurring themes among the genomic regions they had uncovered. Eventually they showed that the fragile sites were associated with sequences or structures that stalled DNA replication, esoteric entities such as inverted repeats, replication termination signals, and transfer RNA genes.

"We only published the tip of the iceberg—there is a lot of work you don't see because the connections simply weren't significant enough. Even now, we didn't find any single sequence motif that would very clearly predict a fragile site," said Petes. "I think there are just a lot of ways to slow down replication, so there is not just one signal to indicate that would occur."

In addition, Petes found that these fragile sites created a surprisingly unstable genome, resulting in a chaotic milieu of rearrangements, duplications and deletions of pieces of DNA or even the gain or loss of entire chromosomes.

"The ability to analyze these sites on a genome-wide basis is an important advance," said Gray Crouse, Ph.D., an expert unaffiliated with the new study who is a professor of biology at Emory University. "It has been known for a long time that many cancer cells have an abnormal number of chromosomes, and many different chromosome rearrangements have been observed in various tumor cells. It is likely that there are many different causes of chromosome instability in . The current work suggests that those chromosomal rearrangements observed at fragile sites and found in may be due to breaks from perturbed replication."

Explore further: Biologists discover 1 reason why chromosomes break, often leading to cancer

More information: "Genome-wide high-resolution mapping of chromosome fragile sites in Saccharomyces cerevisiae," Wei Song, Margaret Dominska, Patricia W. Greenwell, Thomas D. Petes. PNAS, May. 5, 2014. www.pnas.org/cgi/doi/10.1073/pnas.1406847111

Related Stories

Handle with care: Telomeres resemble DNA fragile sites

July 10, 2009

(PhysOrg.com) -- Telomeres, the repetitive sequences of DNA at the ends of linear chromosomes, have an important function: They protect vulnerable chromosome ends from molecular attack. Researchers at Rockefeller University ...

Scientists identify molecular basis for DNA breakage

July 19, 2011

Scientists from the Hebrew University have identified the molecular basis for DNA breakage, a hallmark of cancer cells. The findings of this research have just been published in the journal Molecular Cell.

New light shed on chromosome fragility

December 26, 2011

Why are certain chromosome regions prone to breakages? The answer is crucial, as this fragility is involved in the development of tumors. A team from the Institut de Génétique et de Biologie Moleculaire et Cellulaire ...

Recommended for you

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.

Threat posed by 'pollen thief' bees uncovered

October 9, 2015

A new University of Stirling study has uncovered the secrets of 'pollen thief' bees - which take pollen from flowers but fail to act as effective pollinators - and the threat they pose to certain plant species.

Mapping the protein universe

October 9, 2015

To understand how life works, figure out the proteins first. DNA is the architect of life, but proteins are the workhorses. After proteins are built using DNA blueprints, they are constantly at work breaking down and building ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.