Diamond planets may be more common than astronomers thought

May 13, 2014 by Eric Gershon
Diamond planets may be more common than astronomers thought
Diamond planets may be more common than astronomers thought. Credit: Haven Giguere

(Phys.org) —Carbon-rich planets may be more common than previously thought, according to new research by Yale University astronomers.

Some of these planets, all located far beyond Earth's solar system, could contain vast deposits of graphite or diamonds, and their apparent abundance prompts new questions about the implications of carbon-intense environments for climate, , and other geological processes, as well as for life.

"Despite the relatively small amount of carbon on Earth, carbon has been critical for the emergence of life and the regulation of our climate through the carbon-silicate cycle," said Yale doctoral candidate John Moriarty, who led the research, recently published in Astrophysical Journal. "It's an open question as to how carbon-rich chemistry will affect the habitability of exoplanets. We hope our findings will spark interest in research to help answer these questions."

Moriarty collaborated with Yale astronomy professor Debra Fischer and Nikku Madhusudhan, a former Yale postdoctoral researcher now at Cambridge University.

Exoplanets are planets outside Earth's . In October 2012 Madhusudhan published a paper arguing that 55 Cancri e, a rocky exoplanet twice Earth's size, is likely covered in graphite and diamond.

Astronomers generally believe that rocky exoplanets are composed—as Earth is—largely of iron, oxygen, magnesium, and silicon, with only a small fraction of carbon. In contrast, carbon-rich planets could have between a small percentage and three-quarters of their mass in carbon. (Earth has 0.005%.)

Moriarty, Madhusudhan, and Fischer developed an advanced model for estimating exoplanet composition. Previous models were based on static snapshots of the gaseous pools (or disks) in which planets form. Their new model tracks changes in the composition of the disk as it ages.

The researchers found that, in disks with carbon-oxygen ratios greater than 0.8, carbon-rich planets can form farther from the center of the disk than previously understood. They also found that carbon-rich planets can form in disks with a carbon-oxygen ratio as low as 0.65 if those planets form close to their host star.

Previous models predicted carbon-rich could only form in disks with carbon-oxygen ratios higher than 0.8. This is important, the researchers said, because there are many more stars with carbon-oxygen ratios greater than 0.65 than there are with carbon-oxygen ratios greater than 0.8.

Said Madhusudhan, "Our study shows that extraterrestrial worlds can be extremely diverse in their chemical compositions, including many that are drastically different from our earthly experience."

The paper, published May 6, is titled "Chemistry in an evolving protoplanetary disk: Effects on terrestrial planet composition."

The Yale Center for Astronomy and Astrophysics provided support for the research.

There are more than 1,000 confirmed exoplanets and more than 3,000 exoplanet "candidates."

"An important question is whether or not our Earth is a typical rocky planet," said Fischer. "Despite the growing number of exoplanet discoveries, we still don't have an answer to this question. This work further expands the range of factors that may bear on the habitability of other worlds."

Explore further: Diamond 'super-Earth' may not be quite as precious, graduate student finds

add to favorites email to friend print save as pdf

Related Stories

First carbon-rich exoplanet discovered

Dec 08, 2010

(PhysOrg.com) -- A team led by a former postdoctoral researcher in MIT's Department of Earth, Atmospheric and Planetary Sciences and the MIT Kavli Institute for Astrophysics, recently measured the first-ever ...

How life could have produced most minerals on Earth

Apr 30, 2014

While astronomers are trying to figure out which planets they find are habitable, there are a range of things to consider. How close are they to their parent star? What are their atmospheres made of? And ...

Recommended for you

Gravitational waves according to Planck

11 hours ago

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last spring that it ...

Infant solar system shows signs of windy weather

12 hours ago

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

18 hours ago

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

19 hours ago

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

The frequency of high-energy gamma ray bursts

21 hours ago

In the 1960s a series of satellites were built as part of Project Vela.  Project Vela was intended to detect violations of the 1963 ban on above ground testing of nuclear weapons.  The Vela satellites were ...

User comments : 0