CSU lab team custom-build helmet liner for Brazil event (w/ video)

May 27, 2014 by Nancy Owano weblog

Viewers around the world preparing to watch the World Cup next month in Brazil are also to witness a special event where a paralyzed person, with the help of a robotic exoskeleton, will rise from a wheelchair, walk to the center of the field and kick a soccer ball. The mind-controlled exoskeleton is the work of an inspiring global collaboration among scientists, as part of the Walk Again Project. The exoskeleton is controlled by brain activity and is relaying feedback signals to the patient. The patient's cap picks up brain signals and relays them to a computer in the backpack, decoding the signals and sending them to the legs. More details recently emerged from some of the collaborators, namely research efforts at Colorado State University, where the CSU team developed a protective, custom-made helmet liner for the patient to wear as part of the World Cup walk-again effort.

CSU's Vice President for Research Alan Rudolph asked David Prawel who oversees the university's Idea-2-Product 3D printing lab to create a custom lining for the helmet that the user will wear as part of the device. Lab director Prawel talked about the lab's work in a video recently released. Basically, a man or woman will use his or her brain to tell a robotic prosthesis to move the legs. Prawel noted the different focus areas of global teams to put this system in place. One team built the exoskeleton, basically an outside rigid frame which the patient will wear.

Other teams worked on the neuroscience aspects, while others were focused on circuitry and feedback mechanisms. The Colorado group worked on the helmet portion, and were asked to ensure the helmet performs two jobs, of protecting the patient's head against falls, and of making sure "we protect the electrodes," a complicated design of an immense number of data points involved in the scan of the patient's head,, he said, and the scan of the inside of the helmet. 3D printing technology offered the major benefit of speed at which constant tweaking could occur.

This video is not supported by your browser at this time.
Employees in CSU's Idea-2-Product 3D printing laboratory have developed a protective liner that will be worn by a paralyzed Brazilian adult who, with the help of a robotic exoskeleton, will rise from a wheelchair, walk to the center of the field and kick a soccer ball to begin the games. The demonstration, known as the Walk Again project, will take place during the opening ceremony June 12 in Sao Paulo, Brazil.

"The prosthesis user is outfitted with a cap dotted with electrodes that must be situated just so on the person's head so their brain can optimally communicate with the electrodes, which relay commands to the exoskeleton," said a report on their progress in The Coloradoan. "A custom-made lining ensures the electrodes line up exactly right under a hollowed-out Bern helmet." The report said the final product is a pliable head-sized thermoplastic urethane liner.

Explore further: Robotic exoskeleton replaces muscle work

Related Stories

Robotic exoskeleton replaces muscle work

February 8, 2007

A robotic exoskeleton controlled by the wearer's own nervous system could help users regain limb function, which is encouraging news for people with partial nervous system impairment, say University of Michigan researchers.

Exoskeleton to remote-control robot

May 8, 2014

Visionary 'rocket scientists' will share their ideas on Thursday, 8 May at the TEDx RocketMinds event at ESA's operations centre in Darmstadt, Germany.

Demo of mind-controlled exoskeleton planned for World Cup

May 10, 2014

The World Cup opening ceremony next month in Brazil in and of itself will be enough to make June 12 a standout for athletes and their fans but yet another eye-opener may make the Sao Paulo stadium opener long remembered globally. ...

Toronto team's robotic arm control is all in the mind

May 17, 2014

This week's attention-getting version of a mind-controlled robotic device comes in the form of an Emotiv EPOC BCI headset controlling a robotic arm with a system smart enough to move the arm using simple movements such as ...

Recommended for you

Customizing 3-D printing

September 3, 2015

The technology behind 3-D printing is growing more and more common, but the ability to create designs for it is not. Any but the simplest designs require expertise with computer-aided design (CAD) applications, and even for ...

Team develops targeted drug delivery to lung

September 2, 2015

Researchers from Columbia Engineering and Columbia University Medical Center (CUMC) have developed a new method that can target delivery of very small volumes of drugs into the lung. Their approach, in which micro-liters ...

Magnetic fields provide a new way to communicate wirelessly

September 1, 2015

Electrical engineers at the University of California, San Diego demonstrated a new wireless communication technique that works by sending magnetic signals through the human body. The new technology could offer a lower power ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.