Organic crystal demonstrates superelasticity

May 07, 2014

(Phys.org) —Not only rubber is elastic: There is also another, completely different form of elasticity known as superelasticity. This phenomenon results from a change in crystal structure and was previously only found in alloys and certain inorganic materials. A Japanese scientist has now introduced the first superelastic organic compound in the journal Angewandte Chemie.

Superelasticity, also called "pseudoelasticity", is the ability of special that have undergone extensive deformation to return to their original shape when the pressure is released. This allows some alloys to be stretched out about ten times more than common spring steel without being permanently deformed. The mechanism is different from that involved in the normal elasticity of rubbery substances. In rubber, the polymer chains are stretched out through strain—no compression is possible. In superelastic materials, mechanical stress triggers a change in the —without the individual atoms changing places. When the stress is removed, the materials return to their former structure. Such substances are interesting candidates for use as building materials with "shape memory" in applications such as "self-repairing" vehicle parts.

Superelastic materials other than metal alloys and ceramics have not appeared for over 80 years since the first report of superelasticity in . This phenomenon was previously unknown in organic materials. Satoshi Takamizawa of Yokohama City University has now found superelasticity in an organic crystal for the first time: terepthalamide crystals exhibit superelastic behavior with surprisingly little application of force.

Shear stress on a specific surface of the crystal initially causes the crystal to bend, and then transition to a different crystal phase. The more pressure that is applied, the more this spreads throughout the crystal. When the tension is released, the phase transition moves back across the crystal, which returns to its original structure. Takamizawa and one of his students were able to repeat this superelastic deformation 100 times without any signs of material fatigue.

The crystal consists of individual sheets of slanted terepthalamide molecules (AAAAA sheet arrangement). Shear stress causes the angles of the molecules within the layers to change, which results in a more densely packed A'BA'BA'B sheet arrangement. The layers are held together by a network of hydrogen bridge bonds, which break under pressure and rearrange during the phase transition.

Possible applications of organic superelastic materials include joints made of a single component and elements for dampening vibrations. In medicine, implants made from these types of materials could be deformed for easy introduction and then return to the desired shape and size when they reach the desired location.

Explore further: In-situ nanoindentation study of phase transformation in magnetic shape memory alloys

More information: Takamizawa, S. and Miyamoto, Y. (2014), Superelastic Organic Crystals. Angew. Chem. Int. Ed. DOI: 10.1002/anie.201311014

add to favorites email to friend print save as pdf

Related Stories

Japanese material scientists develop new superelastic alloy

Jul 01, 2011

(PhysOrg.com) -- Working out of Tokyo University, scientists in the Department of Materials Science, have developed a new metal alloy that unlike other “superelastic” alloys can resume its original shape in temperatures ...

Can metals remember their shape at nanoscale, too?

Nov 08, 2011

University of Constance physicists Daniel Mutter and Peter Nielaba have visualized changes in shape memory materials down to the nanometric scale in an article about to be published in the European Physical Journal B.

Swiss cheese crystal, or high-tech sponge?

Jan 27, 2014

The sponges of the future will do more than clean house. Picture this, for example: Doctors use a tiny sponge to soak up a drug and deliver it directly to a tumor. Chemists at a manufacturing plant use another ...

Recommended for you

Throwing light on a mysterious human 'superpower'

just added

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.