Chinese scientists crack the genome of another diploid cotton Gossypium arboreum

May 19, 2014
Gossypium arboreum. Credit: KENPEI, GFDL,Creative Commons Attribution ShareAlike 2.1 Japan License

Chinese scientists from Chinese Academy of Agricultural Sciences and BGI successfully deciphered the genome sequence of another diploid cotton— Gossypium arboreum (AA) after the completed sequencing of G. raimondii (DD) in 2012. G. arboreum, a cultivated cotton, is a putative contributor for the A subgenome of cotton. Its completed genome will play a vital contribution to the future molecular breeding and genetic improvement of cotton and its close relatives. The latest study today was published online in Nature Genetics.

As one of the most important economic crops in the world, cotton also serves as an excellent model system for studying polyploidization, cell elongation and cell wall biosynthesis. However, breeders and geneticists remain little knowledge on the genetic mechanisms underlying its complex allotetraploid nature of the cotton genome (AADD). It has been proposed that all diploid cotton species present may have evolved from a common ancestor, and all tetraploid cotton species came from interspecific hybridization between the cultivated species G. arboreum and the non-cultivated species G. raimondii.

After the completed sequencing of G. raimondii in 2012, researchers started the work on decoding the genome of G. arboreum. In this study, they sequenced and assembled the G. arboreum genome using whole-genome shotgun approach, yielding a draft cotton genome with the size of 1,694 Mb. About 90.4% of the G. arboretum assembled scaffolds were anchored and oriented on 13 pseudochromosomes.

Furthermore, researchers found the long terminal repeat (LTR) retrotransposons insertions and expansions of LTR families contributed significantly to forming the double-sized G. arboreum genome relative to that of G. raimondii. Further molecular phylogenetic analyses suggested that G. arboreum and G. raimondii diverged about 5 million years ago, and the protein-coding capacities of these two species remained largely unchanged.

To investigate the plant morphology mechanisms of cotton species, a series of comparative transcriptome studies were performed. Results suggested that NBS-encoding subfamilies played an essential role on the immune to Verticillium dahliae. The resistance of G. raimondii on Verticillium dahliae was caused by expansion and contraction in the numbers of NBS-encoding genes, accordingly the loss in the genome of G. arboreum was responsible to their susceptible.

Another interesting finding of this study is the cotton fiber cell growth, and they found the 1-aminocyclo-propane-1-carboxylic acid oxidase (ACO) gene was a key modulator. Researchers suggest the overproduction of ACO maybe the reason why G. raimondii have a poor production of spinnable fiber, while the inactivation of ACO in G. arboreum might benefit its fiber development.

The G. arboreum will be an essential reference for the assembly of tetraploid cotton genomes and for evolutionary studies of Gossypium species. It also provides an essential tool for the identification, isolation and manipulation of important genes conferring agronomic traits for molecular breeding and genetic improvement.

Explore further: Planting cotton early may mean less stink bug damage

More information: Genome sequence of the cultivated cotton Gossypium arboreum, DOI: 10.1038/ng.2987

add to favorites email to friend print save as pdf

Related Stories

Chinese scientists crack the genome of diploid cotton

Aug 28, 2012

The international research team led by Chinese Academy of Agricultural Sciences and BGI have completed the genome sequence and analysis of a diploid cotton— Gossypium raimondii. The cotton genome provides an invaluable resour ...

Planting cotton early may mean less stink bug damage

Mar 19, 2014

Stink bugs have been consistently ranked among the most damaging insect pests of cotton in the southeastern United States for the past several years. Apart from the feeding damage, stink bugs are capable ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.