Bacteria can linger on airplane surfaces for days

May 20, 2014

Disease-causing bacteria can linger on surfaces commonly found in airplane cabins for days, even up to a week, according to research presented at the annual meeting of the American Society for Microbiology.

"Many air travelers are concerned about the risks of catching a disease from other passengers given the long time spent in crowded air cabins," says Kiril Vaglenov, of Auburn University who presented the data. "This report describes the results of our first step in investigating this potential problem."

In order for disease-causing to be transmitted from a cabin surface to a person, it must survive the environmental conditions in the airplane. In the study Vaglenov and his colleagues tested the ability of two pathogens, methicillin-resistant Staphylococcus aureus (MRSA) and E. coli O157:H7 to survive on surfaces commonly found in airplanes. They obtained six different types of material from a major airline carrier (armrest, plastic tray table, metal toilet button, window shade, seat pocket cloth, and leather), inoculated them with the bacteria and exposed them to typical conditions.

MRSA lasted longest (168 hours) on material from the seat-back pocket while E. coli O157:H7 survived longest (96 hours) on the material from the armrest.

"Our data show that both of these bacteria can survive for days on the selected types of surfaces independent of the type of simulated body fluid present, and those pose a risk of transmission via skin contact," says Vaglenov.

This research is laying the groundwork for important work to come.

"Our future plans include the exploration of effective cleaning and disinfection strategies, as well as testing surfaces that have natural antimicrobial properties to determine whether these surfaces help reduce the persistence of disease-causing bacteria in the passenger aircraft cabin," says Vaglenov.

They currently have ongoing trials with other human pathogens including the bacteria that cause tuberculosis.

Explore further: New research shows how pathogenic E. coli O157:H7 binds to fresh vegetables

More information: This research was presented as part of the 2014 General Meeting of the American Society for Microbiology held May 17-20, 2014 in Boston, Massachusetts.

add to favorites email to friend print save as pdf

Related Stories

Windshield washer fluid a source of Legionnaires

May 18, 2014

A form of bacteria responsible for respiratory illness, including the deadly pneumonia known as Legionnaire's disease, may be able to grow in windshield washer fluid and was isolated from nearly 75% of school buses tested ...

Homes now 'reservoirs' for superbug MRSA

Apr 21, 2014

An antibiotic-resistant "superbug," long a problem in health-care settings, is now taking up residence in people's homes, a new U.S. study finds.

Recommended for you

YEATS protein potential therapeutic target for cancer

2 hours ago

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

3 hours ago

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0