New atom-scale knowledge on the function of biological photosensors

May 2, 2014
New atom-scale knowledge on the function of biological photosensors
A familiar phenomenon: plants turn toward light. Plants sense light with their photosensors, from which phytochromes are the proteins to sense red light.

The research groups of Janne Ihalainen (University of Jyväskylä) and Sebastian Westenhoff (University of Gothenburg) have clarified how the atom structure of bacterial red light photosensors changes when sensing light. The research reveals structural changes in phytochrome protein when illuminated.

"The results are a unique demonstration of proteins' ability to structural changes in different phases of their operation. This helps to understand how the biological photosensors function. The modelling and utilisation of protein for other applications becomes much easier when the protein structures, their changes and the speed of change are known," says Professor Ihalainen.

The function of few biological photosensors are already utilised in other fields of science, especially in neurosciences. By utilising reactions that are controlled by light, it is possible to achieve new breakthroughs in the cell biological research and, for example, in medical applications such as in phototherapy and in molecular diagnostics.

Organisms use photosensor proteins to sense light on different wavelengths. For example, mammals have rhodopsin proteins in their eyes. Phytochromes, one of the photosensor proteins of plants, fungi and bacteria, are sensitive to . The function of these photosensors was known already in 1970s and 1980s, but their molecular-level operating mechanisms are still unknown.

A pioneering research method

Time-resolved wide-angle X-ray scattering was used to study structural changes of this rather large protein complex in a solution form. The technique, TR-WAXS, is relatively new and in this study a successful combination of the experimental data with the molecular dynamic simulations enabled to track the detailed structural changes of the protein.

The crystal structure of bacterial phytochrome changes when illuminated.

"We hope that other groups using TR-WAXS would test similar data-analysis method as well." Ihalainen says.

The light sensitive phytochrome structures were clarified both in a crystal form and in a solution. From the crystal structures, it is possible to see that small movement of individual atoms (scale of 0.1 – 0.2 nm) caused by the absorption of light is amplified to large structural changes (3 nanometres) in the whole protein complex. This amplification mechanism enables the induced signal transmission from one to another very quickly and with precise replication accuracy. In turn, this signal transmission process initiates cellular-level changes in the organism.

Explore further: Algae 'see' a wide range of light

More information: "Signal amplification and transduction in phytochrome photosensors." Heikki Takala, et al. Nature (2014) DOI: 10.1038/nature13310. Received 23 December 2013 Accepted 07 April 2014 Published online 30 April 2014

Related Stories

Algae 'see' a wide range of light

May 1, 2014

(Phys.org) —Aquatic algae can sense an unexpectedly wide range of color, allowing them to sense and adapt to changing light conditions in lakes and oceans. The study by researchers at UC Davis was published earlier this ...

Understanding the initiation of protein synthesis in mammals

March 19, 2014

(Phys.org) —Protein synthesis, the process by which cells generate new proteins, is the most important cellular function, requiring more than 70 percent of the total energy of a cell. The initiation of this process is the ...

Five-dimensional crystallography probes molecular structure

November 26, 2013

(Phys.org) —Successful development of new pharmaceuticals could be the payoff from five-dimensional crystallography, a new experimental technique employed by researchers carrying out studies at the BioCARS facility at the ...

How do bacteria repair damage from the sun?

January 24, 2014

(Phys.org) —From bacteria to plants to humans, all organisms have mechanisms that they use to repair DNA damaged by ultraviolet (UV) light. This fundamental maintenance function is critical to our health because damaged ...

A new dimension for 3-D protein structures

May 13, 2013

(Phys.org) —3D structures of biological molecules like proteins directly affect the way they behave in our bodies. EPFL scientists have developed a new infrared-UV laser method to more accurately determine the structure ...

Infrared sheds light on single protein complexes

December 17, 2013

Researchers from the nanoscience research center CIC nanoGUNE, the Freie Universität Berlin and Neaspec company employ nano-FTIR spectroscopy for label-free chemical and structural imaging of proteins with nanoscale spatial ...

Recommended for you

Cow gene study shows why most clones fail

December 9, 2016

It has been 20 years since Dolly the sheep was successfully cloned in Scotland, but cloning mammals remains a challenge. A new study by researchers from the U.S. and France of gene expression in developing clones now shows ...

Blueprint for shape in ancient land plants

December 9, 2016

Scientists from the Universities of Bristol and Cambridge have unlocked the secrets of shape in the most ancient of land plants using time-lapse imaging, growth analysis and computer modelling.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.